知识图谱与神经网络,神经调节知识网络图
1、图立方和知识图谱的区别和联系与区别
图网络,即Natural Graph,是基于世界各实体之间的自然关系表示而得到的图,他们的节点一般是某个特定网络中的实体(人、物理机、分子)。例如:社交网络、通信网络、蛋白质网络。
知识图谱,即Knowledge Graph,它一般是由知识或信息组织而成的图,它是专门被用来构建知识库并支持决策的。因此知识图谱中的节点可以直接是抽象名词,或者是世界知识或语言知识。
二、异同点
① 二者都是由节点和边组成的图。但是图网络中的实体都是客观存在的,是对真实世界关系的一种呈现;知识图谱主要是把客观世界潜在的知识结构呈现出来,实体可以是抽象的名词。
② 二者都是异质信息网络,但是任务不同。KG是一种知识量丰富的异质信息网络(Heterogeneous Information Network, HIN),它更关注建模实现对关系、节点的表示,模型学习的重点是节点之间的关系,以更好地存储、抽取、推理知识。NG建模任务更关注节点的表示,模型学习的重点是图网络的结构,以达到对节点分类、聚类、链接预测的目的。
三、图网络表示学习(Graph Embedding) VS 知识图谱表示学习(Knowledge Graph Embedding)
也可以称图嵌入学习,分为图网络嵌入graph embedding以及知识图谱嵌入knowledge graph embedding。从起源看,这两个任务中最火的方法DeepWalk和TransE,都是受到了word2vec启发提出来的,只是前者是受到了word2vec处理文本序列、由中心词预测上下文的启发;而后者受到了word2vec能自动发现implicit relation (也就是大家常说的 king - man = queen - woman)的启发。
两者的相同之处是目标一致,都旨在对研究对象建立分布式表示。不同之处在于,知识表示重在如何处理实体间的显式关系上;而网络表示重在如何充分考虑节点在网络中的复杂结构信息(如community等)。
1)学习目标不同
网络表示比较注重在嵌入式空间中保留网络的拓扑结构信息,知识图谱的表示在保留结构信息的基础上,也同样注重于关系的重要性,以及它们的头尾关系。知识图谱表示学习更偏向关系建模,在保留结构信息的基础上强调关系和头尾关系,强调的是节点和关系的表示,节点和关系同样重要,因此,知识图谱表示学习中往往指明了关系,比如水果和猕猴桃之间是所属关系。
2)学习方法不同
网络表示学习通常包括三种:基于矩阵分解的模型,比如SVD;基于随机游走的模型,比如DeepWalk;基于深度神经网络的模型,包括CNN、RNN等;此外还有同质网络、异质网络的区分,还有属性网络、融合伴随信息的网络等。
与此不同的是,典型的知识图谱表示算法包括trans系列的算法,如TransE、TransR、TransH等,通过这个三元组去刻画实体和关系的向量表示。
2、支撑智能硬件,重点研究的六项关键技术是?
一、机器学习
机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心知识图谱嵌入神经网络。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
扩展资料:
智能硬件是一个科技概念,指通过将硬件和软件相结合对传统设备进行智能化改造。而智能硬件移动应用则是软件,通过应用连接智能硬件,操作简单,开发简便,各式应用层出不穷,也是企业获取用户的重要入口。
改造对象可能是电子设备,例如手表、电视和其他电器;也可能是以前没有电子化的设备,例如门锁、茶杯、汽车甚至房子。
智能硬件已经从可穿戴设备延伸到智能电视、智能家居、智能汽车、医疗健康、智能玩具、机器人等领域。比较典型的智能硬件包括Google Glass、三星Gear、FitBit、麦开水杯、咕咚手环、Tesla、乐视电视等。
3、每个电话机器人都需要有智能对话分析功能吗?
电话机器人一般都是需要有智能对话分析功能的。
自动语音识别
将麦克风采集到的用户声音转化为文字的过程。
自然语义理解
将用户说的话转化成机器能理解的话,例如把转化成文字后的两句话“给张三打电话”和“打电话给张三”理解成同样的操作。
自然语言生成
与自然语义理解相反,是将机器的语言转化人的语言,本阶段的输出是文字。
语音合成
将文字合成声音并播放出来,并尽可能的模仿人类自然说话的语音语调,给人以交谈的感觉。
智能客服中用到的AI技术
上面从客服处理过程的角度介绍了几种技术范畴。
深度神经网络
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度神经网络是一种机器学习算法,可以大大提高智能客服应用中的识别率。
知识图谱
知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络。知识图谱是基于现有数据的再加工,包括关系数据库中的结构化数据、文本或XML中的非结构化或半结构化数据、客户数据、领域本体知识以及外部知识,通过各种数据挖掘、信息抽取和知识融合技术形成一个统一的全局的知识库。
4、为什么有图卷积神经网络?
本质上说,世界上所有的数据都是拓扑结构,也就是网络结构,如果能够把这些网络数据真正的收集、融合起来,这确实是实现了AI智能的第一步。所以,如何利用深度学习处理这些复杂的拓扑数据,如何开创新的处理图数据以及知识图谱的智能算法是AI的一个重要方向。
深度学习在多个领域的成功主要归功于计算资源的快速发展(如 GPU)、大量训练数据的收集,还有深度学习从欧几里得数据(如图像、文本和视频)中提取潜在表征的有效性。但是,尽管深度学习已经在欧几里得数据中取得了很大的成功,但从非欧几里得域生成的数据已经取得更广泛的应用,它们需要有效分析。如在电子商务领域,一个基于图的学习系统能够利用用户和产品之间的交互以实现高度精准的推荐。在化学领域,分子被建模为图,新药研发需要测定其生物活性。在论文引用网络中,论文之间通过引用关系互相连接,需要将它们分成不同的类别。自2012年以来,深度学习在计算机视觉以及自然语言处理两个领域取得了巨大的成功。假设有一张图,要做分类,传统方法需要手动提取一些特征,比如纹理,颜色,或者一些更高级的特征。然后再把这些特征放到像随机森林等分类器,给到一个输出标签,告诉它是哪个类别。而深度学习是输入一张图,经过神经网络,直接输出一个标签。特征提取和分类一步到位,避免了手工提取特征或者人工规则,从原始数据中自动化地去提取特征,是一种端到端(end-to-end)的学习。相较于传统的方法,深度学习能够学习到更高效的特征与模式。
图数据的复杂性对现有机器学习算法提出了重大挑战,因为图数据是不规则的。每张图大小不同、节点无序,一张图中的每个节点都有不同数目的邻近节点,使得一些在图像中容易计算的重要运算(如卷积)不能再直接应用于图。此外,现有机器学习算法的核心假设是实例彼此独立。然而,图数据中的每个实例都与周围的其它实例相关,含有一些复杂的连接信息,用于捕获数据之间的依赖关系,包括引用、朋友关系和相互作用。
最近,越来越多的研究开始将深度学习方法应用到图数据领域。受到深度学习领域进展的驱动,研究人员在设计图神经网络的架构时借鉴了卷积网络、循环网络和深度自编码器的思想。为了应对图数据的复杂性,重要运算的泛化和定义在过去几年中迅速发展。