电磁功率流和坡印廷矢量
回顾:
场源的影响周围的快慢取决于距离和传播速度
场源变化引起电磁波,电磁波传输能量
电磁能量的流动满足能量守恒定律
我们关心的是
体积V里面和体积外怎么交换能量,S是包围的闭合面
大家想一想,体积里面有场源
随着能量的增长,不断向外辐射能量
现在关心的是体积内部和外部怎么进行能量交换
体积里面的总电磁能量
这个体积里面的能量随着时间的变化率
变化率就是关于世间的偏导数,假定体积不随时间变化
由此公式转化为
现在我们再改变一下,假定介质的介电常数不随时间变化(非色散介质)
意味着介电常数不随时间变化
同理我们可以得到
现在我们把关系再处理处理
大家看,我们这个又可以写成
由此我们可以得到
现在我们同时乘以负号,再进行合并
现在再来看一下物理含义
如果现在体积V里面没有场源,此时我们现在里面是导电媒质
一旦电磁波进入,电磁波里面有电场分量,电场就要驱动形成传导电流
传导电流不止是在有源的地方存在,在有电场有导电能力的地方就会存在
如果没有负号,左边代表电磁能量的增长率
右边第二项是导电媒质引起的焦耳损耗的能量,只能靠电磁能量来减少
还有右边第一项
我们把关系式再写一下
现在这个方程右边第一项是导电媒质的损耗,还有一部分就是穿出去的通量
实际上就是我们的体积V供应给外部的能量
反映了这样的事实,一部分供应给内部,一部分供应给外部
反映了体积V内外交换电磁场的能量
不是发生在一个点,而是在所有点上都会发生
最大的方向出现在上
我们称之为坡印廷矢量
如果S和坡印廷矢量一致的话,表示单位时间穿过与S垂直的单位面积能量的多少
我们把这个定律称为能量的守恒与转化定律,也就是坡印廷定律
我们看到能量流动的方向与电场,磁场相互垂直,在他们所构成的平面的法线方向
如果现在我们分析的是恒定场,电场磁场不随着时间变化
电磁能量不随着时间变化,在守恒变化里面,对时间的偏导数等于0
体积里面的焦耳损耗还是发生的
损耗的能量只能靠外部的电磁场源源不断地提供,我们得到了电磁能量的传递者仍然是电磁场
能量的载体不是电荷或者电流而是电磁场
电缆就是把电源的能量定向传递给负载
我们现在就想知道电源把能量传递给负载,是在外部流动呢还是在电磁场里面流动呢
如果导体介质都是理想的
那么在里面电场磁场强度都为0
在内导体的内部,坡印廷矢量等于0
我们看到在导体内部没有能量流动
我们看电场强度的方向 和磁场强度的方向
坡印廷方向沿着轴线方向
能量流动在介质中不在导体里面
然后我们取一个闭合面
我们就可以得到
这个的积分就是流进体积内部的功率,作为损耗,我们说这个功率我们记为P
我们电源提供的功率通过介质从电源流向负载
因此电磁场是能量的载体
那既然导体不是能量的载体,那我们要导体干什么
导体是支撑电磁场的结构,起到导引和支撑电磁场的作用
下面就是不是理想电磁场
导体内部流过电流,那就有电场强度
电流只有轴线方向的分量
直流电是均匀分布的
坡印廷向量水平向右
我们再看电场强度一定有Z方向的分量
我们的电场