LeetCode刷题复盘笔记—一文搞懂动态规划之674. 最长连续递增序列问题(动态规划系列第三十篇)
今日主要总结一下动态规划的一道题目,674. 最长连续递增序列
题目:674. 最长连续递增序列
Leetcode题目地址
题目描述:
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
提示:
1 <= nums.length <= 104
-109 <= nums[i] <= 109
本题重难点
最长连续递增序列也是动规的经典题目, 本题相对于之前的一文搞懂动态规划之300. 最长递增子序列问题最大的区别在于“连续”。
本题要求的是最长连续递增序列
方法一、动态规划解法
动规五部曲分析如下:
-
确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]。
注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。 -
确定递推公式
如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。
即:dp[i] = dp[i - 1] + 1;
注意这里就体现出和一文搞懂动态规划之300. 最长递增子序列问题的区别!
因为本题要求连续递增子序列,所以就必要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。
既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i] 和 nums[i - 1]。
这里大家要好好体会一下! -
dp数组如何初始化
以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。
所以dp[i]应该初始1; -
确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。
本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:
for (int i = 1; i < nums.size(); i++) {
if (nums[i] > nums[i - 1]) { // 连续记录
dp[i] = dp[i - 1] + 1;
}
}
- 举例推导dp数组
已输入nums = [1,3,5,4,7]为例,dp数组状态如下:
注意这里要取dp[i]里的最大值,所以dp[2]才是结果!
C++代码
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if (nums.size() == 0) return 0;
vector<int>dp(nums.size(), 1);
int res = 1;
for(int i = 1; i < nums.size(); i++){
if(nums[i] > nums[i - 1]){
dp[i] = dp[i - 1] + 1;
}
if(dp[i] > res) {
res = dp[i];
}
}
return res;
}
};
时间复杂度:O(n)
空间复杂度:O(n)
方法二、贪心解法
这道题目也可以用贪心来做,也就是遇到nums[i] > nums[i - 1]的情况,count就++,否则count为1,记录count的最大值就可以了。
C++代码
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if (nums.size() == 0) return 0;
int res = 1;
int count = 1;
for(int i = 1; i < nums.size(); i++){
if(nums[i] > nums[i - 1]){
count++;
}
else count = 1;
if(count > res) {
res = count;
}
}
return res;
}
};
时间复杂度:O(n)
空间复杂度:O(1)
总结
动态规划
英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的
对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
本题也是动规里子序列问题的经典题目,但也可以用贪心来做,大家也会发现贪心好像更简单一点,而且空间复杂度仅是O(1)。
在动规分析中,关键是要理解和一文搞懂动态规划之300. 最长递增子序列问题的区别。
要联动起来,才能理解递增子序列怎么求,递增连续子序列又要怎么求。
概括来说:不连续递增子序列的跟前0-i 个状态有关,连续递增的子序列只跟前一个状态有关
本篇我也把区别所在之处重点介绍了,关键在递推公式和遍历方法上,大家可以仔细体会一波!
欢迎大家关注本人公众号:编程复盘与思考随笔
(关注后可以免费获得本人在csdn发布的资源源码)