当前位置: 首页 > news >正文

高等数学(第七版)同济大学 习题12-1 个人解答

高等数学(第七版)同济大学 习题12-1

 

1.  写出下列级数的前五项: \begin{aligned}&1. \ 写出下列级数的前五项:&\end{aligned} 1. 写出下列级数的前五项:

   ( 1 )    ∑ n = 1 ∞ 1 + n 1 + n 2 ;                     ( 2 )    ∑ n = 1 ∞ 1 ⋅ 3 ⋅   ⋅ ⋅ ⋅   ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅   ⋅ ⋅ ⋅   ⋅ 2 n ;    ( 3 )    ∑ n = 1 ∞ ( − 1 ) n − 1 5 n ;                  ( 4 )    ∑ n = 1 ∞ n ! n n . \begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}\frac{1+n}{1+n^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \sum_{n=1}^{\infty}\frac{1\cdot 3\cdot \ \cdot\cdot\cdot \ \cdot (2n-1)}{2\cdot 4 \cdot \ \cdot\cdot\cdot \ \cdot 2n};\\\\ &\ \ (3)\ \ \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{5^n};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \sum_{n=1}^{\infty}\frac{n!}{n^n}. & \end{aligned}   (1)  n=11+n21+n                    (2)  n=124  2n13  (2n1)  (3)  n=15n(1)n1                 (4)  n=1nnn!.

解:

   ( 1 )   u 1 = 1 + 1 1 + 1 2 = 1 , u 2 = 1 + 2 1 + 2 2 = 3 5 , u 3 = 1 + 3 1 + 3 2 = 2 5 , u 4 = 1 + 4 1 + 4 2 = 5 17 , u 5 = 1 + 5 1 + 5 2 = 3 13 .    ( 2 )   u 1 = 2 ⋅ 1 − 1 2 ⋅ 1 = 1 2 , u 2 = 1 2 ⋅ 2 ⋅ 2 − 1 2 ⋅ 2 = 3 8 , u 3 = 3 8 ⋅ 2 ⋅ 3 − 1 2 ⋅ 3 = 5 16 , u 4 = 5 16 ⋅ 2 ⋅ 4 − 1 2 ⋅ 4 = 35 128 ,          u 5 = 35 128 ⋅ 2 ⋅ 5 − 1 2 ⋅ 5 = 63 256 .    ( 3 )   u 1 = ( − 1 ) 0 5 0 = 1 5 , u 2 = ( − 1 ) 1 5 2 = − 1 25 , u 3 = ( − 1 ) 2 5 3 = 1 125 , u 4 = ( − 1 ) 3 5 4 = − 1 625 , u 5 = ( − 1 ) 4 5 5 = 1 3125 .    ( 4 )   u 1 = 1 ! 1 1 = 1 , u 2 = 2 ! 2 2 = 1 2 , u 3 = 3 ! 3 3 = 2 9 , u 4 = 4 ! 4 4 = 3 32 , u 5 = 5 ! 5 5 = 24 625 . \begin{aligned} &\ \ (1)\ u_1=\frac{1+1}{1+1^2}=1,u_2=\frac{1+2}{1+2^2}=\frac{3}{5},u_3=\frac{1+3}{1+3^2}=\frac{2}{5},u_4=\frac{1+4}{1+4^2}=\frac{5}{17},u_5=\frac{1+5}{1+5^2}=\frac{3}{13}.\\\\ &\ \ (2)\ u_1=\frac{2\cdot 1-1}{2\cdot 1}=\frac{1}{2},u_2=\frac{1}{2}\cdot\frac{2\cdot 2-1}{2\cdot 2}=\frac{3}{8},u_3=\frac{3}{8}\cdot \frac{2\cdot 3-1}{2\cdot 3}=\frac{5}{16},u_4=\frac{5}{16}\cdot \frac{2\cdot 4-1}{2\cdot 4}=\frac{35}{128},\\\\ &\ \ \ \ \ \ \ \ u_5=\frac{35}{128}\cdot \frac{2\cdot 5-1}{2\cdot 5}=\frac{63}{256}.\\\\ &\ \ (3)\ u_1=\frac{(-1)^0}{5^0}=\frac{1}{5},u_2=\frac{(-1)^1}{5^2}=-\frac{1}{25},u_3=\frac{(-1)^2}{5^3}=\frac{1}{125},u_4=\frac{(-1)^3}{5^4}=-\frac{1}{625},u_5=\frac{(-1)^4}{5^5}=\frac{1}{3125}.\\\\ &\ \ (4)\ u_1=\frac{1!}{1^1}=1,u_2=\frac{2!}{2^2}=\frac{1}{2},u_3=\frac{3!}{3^3}=\frac{2}{9},u_4=\frac{4!}{4^4}=\frac{3}{32},u_5=\frac{5!}{5^5}=\frac{24}{625}. & \end{aligned}   (1) u1=1+121+1=1u2=1+221+2=53u3=1+321+3=52u4=1+421+4=175u5=1+521+5=133.  (2) u1=21211=21u2=2122221=83u3=8323231=165u4=16524241=12835        u5=1283525251=25663.  (3) u1=50(1)0=51u2=52(1)1=251u3=53(1)2=1251u4=54(1)3=6251u5=55(1)4=31251.  (4) u1=111!=1u2=222!=21u3=333!=92u4=444!=323u5=555!=62524.


2.  根据级数收敛与发散的定义判定下列级数的收敛性: \begin{aligned}&2. \ 根据级数收敛与发散的定义判定下列级数的收敛性:&\end{aligned} 2. 根据级数收敛与发散的定义判定下列级数的收敛性:

   ( 1 )    ∑ n = 1 ∞ ( n + 1 − n ) ;    ( 2 )    1 1 ⋅ 3 + 1 3 ⋅ 5 + 1 5 ⋅ 7 + ⋅ ⋅ ⋅ + 1 ( 2 n − 1 ) ( 2 n + 1 ) + ⋅ ⋅ ⋅ ;    ( 3 )    s i n   π 6 + s i n   2 π 6 + ⋅ ⋅ ⋅ + s i n   n π 6 + ⋅ ⋅ ⋅ ;    ( 4 )    ∑ n = 1 ∞ l n ( 1 + 1 n ) . \begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n});\\\\ &\ \ (2)\ \ \frac{1}{1\cdot 3}+\frac{1}{3\cdot 5}+\frac{1}{5\cdot 7}+\cdot\cdot\cdot+\frac{1}{(2n-1)(2n+1)}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ sin\ \frac{\pi}{6}+sin\ \frac{2\pi}{6}+\cdot\cdot\cdot+sin\ \frac{n\pi}{6}+\cdot\cdot\cdot;\\\\ &\ \ (4)\ \ \sum_{n=1}^{\infty}ln\left(1+\frac{1}{n}\right). & \end{aligned}   (1)  n=1(n+1 n )  (2)  131+351+571++(2n1)(2n+1)1+  (3)  sin 6π+sin 62π++sin 6+  (4)  n=1ln(1+n1).

解:

   ( 1 )  因为 s n = ( 2 − 1 ) + ( 3 − 2 ) + ⋅ ⋅ ⋅ + ( n + 1 − n ) = n + 1 − 1 , lim ⁡ n → ∞ s n = ∞ ,根据定义可知         级数 ∑ n = 1 ∞ ( n + 1 − n ) 发散 .    ( 2 )  因为 u n = 1 ( 2 n − 1 ) ( 2 n + 1 ) = 1 2 ( 1 2 n − 1 − 1 2 n + 1 ) ,则          s n = 1 2 [ ( 1 − 1 3 ) + ( 1 3 − 1 5 ) + ⋅ ⋅ ⋅ + ( 1 2 n − 1 − 1 2 n + 1 ) ] = 1 2 ( 1 − 1 2 n + 1 ) , lim ⁡ n → ∞ s n = 1 2 ,         所以根据定义可知级数收敛 .    ( 3 )  因为 u n = s i n   n π 6 = 2 s i n   π 12 s i n   n π 6 2 s i n   π 12 = c o s   2 n − 1 12 π − c o s   2 n + 1 12 π 2 s i n   π 12 ,则          s n = 1 2 s i n   π 12 [ ( c o s   π 12 − c o s   3 π 12 ) + ( c o s   3 π 12 − c o s   5 π 12 ) + ⋅ ⋅ ⋅ + ( c o s   2 n − 1 12 π − c o s   2 n + 1 12 π ) ] =          1 2 s i n   π 12 ( c o s   π 12 − c o s   2 n + 1 12 π ) ,当 n → ∞ 时, c o s   2 n + 1 12 π 极限不存在,所以 s n 的极限不存在,级数发散 .    ( 4 )  因为 s n = l n   2 + l n   3 2 + l n   4 3 + ⋅ ⋅ ⋅ + l n   n + 1 n = l n ( n + 1 ) , lim ⁡ n → ∞ s n = ∞ ,所以级数发散 . \begin{aligned} &\ \ (1)\ 因为s_n=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+\cdot\cdot\cdot+(\sqrt{n+1}-\sqrt{n})=\sqrt{n+1}-1,\lim_{n\rightarrow \infty}s_n=\infty,根据定义可知\\\\ &\ \ \ \ \ \ \ \ 级数\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})发散.\\\\ &\ \ (2)\ 因为u_n=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right),则\\\\ &\ \ \ \ \ \ \ \ s_n=\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdot\cdot\cdot+\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)\right]=\frac{1}{2}\left(1-\frac{1}{2n+1}\right),\lim_{n \rightarrow \infty}s_n=\frac{1}{2},\\\\ &\ \ \ \ \ \ \ \ 所以根据定义可知级数收敛.\\\\ &\ \ (3)\ 因为u_n=sin\ \frac{n\pi}{6}=\frac{2sin\ \frac{\pi}{12}sin\ \frac{n\pi}{6}}{2sin\ \frac{\pi}{12}}=\frac{cos\ \frac{2n-1}{12}\pi-cos\ \frac{2n+1}{12}\pi}{2sin\ \frac{\pi}{12}},则\\\\ &\ \ \ \ \ \ \ \ s_n=\frac{1}{2sin\ \frac{\pi}{12}}\left[\left(cos\ \frac{\pi}{12}-cos\ \frac{3\pi}{12}\right)+\left(cos\ \frac{3\pi}{12}-cos\ \frac{5\pi}{12}\right)+\cdot\cdot\cdot+\left(cos\ \frac{2n-1}{12}\pi-cos\ \frac{2n+1}{12}\pi\right)\right]=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{2sin\ \frac{\pi}{12}}\left(cos\ \frac{\pi}{12}-cos\ \frac{2n+1}{12}\pi\right),当n\rightarrow \infty时,cos\ \frac{2n+1}{12}\pi极限不存在,所以s_n的极限不存在,级数发散.\\\\ &\ \ (4)\ 因为s_n=ln\ 2+ln\ \frac{3}{2}+ln\ \frac{4}{3}+\cdot\cdot\cdot+ln\ \frac{n+1}{n}=ln(n+1),\lim_{n\rightarrow \infty}s_n=\infty,所以级数发散. & \end{aligned}   (1) 因为sn=(2 1)+(3 2 )++(n+1 n )=n+1 1nlimsn=,根据定义可知        级数n=1(n+1 n )发散.  (2) 因为un=(2n1)(2n+1)1=21(2n112n+11),则        sn=21[(131)+(3151)++(2n112n+11)]=21(12n+11)nlimsn=21        所以根据定义可知级数收敛.  (3) 因为un=sin 6=2sin 12π2sin 12πsin 6=2sin 12πcos 122n1πcos 122n+1π,则        sn=2sin 12π1[(cos 12πcos 123π)+(cos 123πcos 125π)++(cos 122n1πcos 122n+1π)]=        2sin 12π1(cos 12πcos 122n+1π),当n时,cos 122n+1π极限不存在,所以sn的极限不存在,级数发散.  (4) 因为sn=ln 2+ln 23+ln 34++ln nn+1=ln(n+1)nlimsn=,所以级数发散.


3.  判定下列级数的收敛性: \begin{aligned}&3. \ 判定下列级数的收敛性:&\end{aligned} 3. 判定下列级数的收敛性:

   ( 1 )    − 8 9 + 8 2 9 2 − 8 3 9 3 + ⋅ ⋅ ⋅ + ( − 1 ) n 8 n 9 n + ⋅ ⋅ ⋅ ;    ( 2 )    1 3 + 1 6 + 1 9 + ⋅ ⋅ ⋅ + 1 3 n + ⋅ ⋅ ⋅ ;    ( 3 )    1 3 + 1 3 + 1 3 3 + ⋅ ⋅ ⋅ + 1 3 n + ⋅ ⋅ ⋅ ;    ( 4 )    3 2 + 3 2 2 2 + 3 3 2 3 + ⋅ ⋅ ⋅ + 3 n 2 n + ⋅ ⋅ ⋅ ;    ( 5 )    ( 1 2 + 1 3 ) + ( 1 2 2 + 1 3 2 ) + ( 1 2 3 + 1 3 3 ) + ⋅ ⋅ ⋅ + ( 1 2 n + 1 3 n ) + ⋅ ⋅ ⋅ . \begin{aligned} &\ \ (1)\ \ -\frac{8}{9}+\frac{8^2}{9^2}-\frac{8^3}{9^3}+\cdot\cdot\cdot+(-1)^n\frac{8^n}{9^n}+\cdot\cdot\cdot;\\\\ &\ \ (2)\ \ \frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\cdot\cdot\cdot+\frac{1}{3n}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ \frac{1}{3}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt[3]{3}}+\cdot\cdot\cdot+\frac{1}{\sqrt[n]{3}}+\cdot\cdot\cdot;\\\\ &\ \ (4)\ \ \frac{3}{2}+\frac{3^2}{2^2}+\frac{3^3}{2^3}+\cdot\cdot\cdot+\frac{3^n}{2^n}+\cdot\cdot\cdot;\\\\ &\ \ (5)\ \ \left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}\right)+\left(\frac{1}{2^3}+\frac{1}{3^3}\right)+\cdot\cdot\cdot+\left(\frac{1}{2^n}+\frac{1}{3^n}\right)+\cdot\cdot\cdot. & \end{aligned}   (1)  98+92829383++(1)n9n8n+  (2)  31+61+91++3n1+  (3)  31+3 1+33 1++n3 1+  (4)  23+2232+2333++2n3n+  (5)  (21+31)+(221+321)+(231+331)++(2n1+3n1)+.

解:

   ( 1 )  该级数为等比级数,公比为 q = − 8 9 ,因为 ∣ q ∣ < 1 ,所以该级数收敛 .    ( 2 )  该级数的部分和 s n = 1 3 + 1 6 + 1 9 + ⋅ ⋅ ⋅ + 1 3 n = 1 3 ( 1 + 1 2 + 1 3 + ⋅ ⋅ ⋅ + 1 n ) ,         因 lim ⁡ n → ∞ ( 1 + 1 2 + 1 3 + ⋅ ⋅ ⋅ + 1 n ) = + ∞ , lim ⁡ n → ∞ s n = + ∞ ,所以该级数发散 .    ( 3 )  该级数的一般项 u n = 1 3 n ,因 lim ⁡ n → ∞ u n = lim ⁡ n → ∞ ( 1 3 ) 1 n = 1 ,不满足收敛的必要条件,所以该级数发散 .    ( 4 )  该级数为等比级数,公比为 q = 3 2 ,因为 ∣ q ∣ > 1 ,所以该级数发散 .    ( 5 )  该级数的一般项 u n = 1 2 n + 1 3 n ,因为 ∑ n = 1 ∞ 1 2 n 和 ∑ n = 1 ∞ 1 3 n 都为等比级数,公比分别为 q = 1 2 , q = 1 3 ,         因为 ∣ q ∣ < 1 ,所以 ∑ n = 1 ∞ 1 2 n 和 ∑ n = 1 ∞ 1 3 n 都收敛,根据收敛级数性质可知,级数收敛 . \begin{aligned} &\ \ (1)\ 该级数为等比级数,公比为q=-\frac{8}{9},因为|q| \lt 1,所以该级数收敛.\\\\ &\ \ (2)\ 该级数的部分和s_n=\frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\cdot\cdot\cdot+\frac{1}{3n}=\frac{1}{3}\left(1+\frac{1}{2}+\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{n}\right),\\\\ &\ \ \ \ \ \ \ \ 因\lim_{n\rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{n}\right)=+\infty,\lim_{n\rightarrow \infty}s_n=+\infty,所以该级数发散.\\\\ &\ \ (3)\ 该级数的一般项u_n=\frac{1}{\sqrt[n]{3}},因\lim_{n\rightarrow \infty}u_n=\lim_{n\rightarrow \infty}\left(\frac{1}{3}\right)^{\frac{1}{n}}=1,不满足收敛的必要条件,所以该级数发散.\\\\ &\ \ (4)\ 该级数为等比级数,公比为q=\frac{3}{2},因为|q| \gt 1,所以该级数发散.\\\\ &\ \ (5)\ 该级数的一般项u_n=\frac{1}{2^n}+\frac{1}{3^n},因为\sum_{n=1}^{\infty}\frac{1}{2^n}和\sum_{n=1}^{\infty}\frac{1}{3^n}都为等比级数,公比分别为q=\frac{1}{2},q=\frac{1}{3},\\\\ &\ \ \ \ \ \ \ \ 因为|q| \lt 1,所以\sum_{n=1}^{\infty}\frac{1}{2^n}和\sum_{n=1}^{\infty}\frac{1}{3^n}都收敛,根据收敛级数性质可知,级数收敛. & \end{aligned}   (1) 该级数为等比级数,公比为q=98,因为q<1,所以该级数收敛.  (2) 该级数的部分和sn=31+61+91++3n1=31(1+21+31++n1)        nlim(1+21+31++n1)=+nlimsn=+,所以该级数发散.  (3) 该级数的一般项un=n3 1,因nlimun=nlim(31)n1=1,不满足收敛的必要条件,所以该级数发散.  (4) 该级数为等比级数,公比为q=23,因为q>1,所以该级数发散.  (5) 该级数的一般项un=2n1+3n1,因为n=12n1n=13n1都为等比级数,公比分别为q=21q=31        因为q<1,所以n=12n1n=13n1都收敛,根据收敛级数性质可知,级数收敛.


4.  利用柯西审敛原理判定下列级数的收敛性: \begin{aligned}&4. \ 利用柯西审敛原理判定下列级数的收敛性:&\end{aligned} 4. 利用柯西审敛原理判定下列级数的收敛性:

   ( 1 )    ∑ n = 1 ∞ ( − 1 ) n + 1 n ;    ( 2 )    1 + 1 2 − 1 3 + 1 4 + 1 5 − 1 6 + ⋅ ⋅ ⋅ + 1 3 n − 2 + 1 3 n − 1 − 1 3 n + ⋅ ⋅ ⋅ ;    ( 3 )    ∑ n = 1 ∞ s i n   n x 2 n ;    ( 4 )    ∑ n = 0 ∞ ( 1 3 n + 1 + 1 3 n + 2 − 1 3 n + 3 ) . \begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n};\\\\ &\ \ (2)\ \ 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{3n-2}+\frac{1}{3n-1}-\frac{1}{3n}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ \sum_{n=1}^{\infty}\frac{sin\ nx}{2^n};\\\\ &\ \ (4)\ \ \sum_{n=0}^{\infty}\left(\frac{1}{3n+1}+\frac{1}{3n+2}-\frac{1}{3n+3}\right). & \end{aligned}   (1)  n=1n(1)n+1  (2)  1+2131+41+5161++3n21+3n113n1+  (3)  n=12nsin nx  (4)  n=0(3n+11+3n+213n+31).

解:

   ( 1 )   ∣ s n + p − s n ∣ = ∣ u n + 1 + u n + 2 + u n + 3 + ⋅ ⋅ ⋅ + u n + p ∣ = ∣ ( − 1 ) n + 2 n + 1 + ( − 1 ) n + 3 n + 2 + ( − 1 ) n + 4 n + 3 + ⋅ ⋅ ⋅ + ( − 1 ) n + p + 1 n + p ∣ =          ∣ 1 n + 1 − 1 n + 2 + 1 n + 3 − ⋅ ⋅ ⋅ + ( − 1 ) p − 1 n + p ∣ ,         因为 1 n + 1 − 1 n + 2 + 1 n + 3 − ⋅ ⋅ ⋅ + ( − 1 ) p − 1 n + p = { ( 1 n + 1 − 1 n + 2 ) + ( 1 n + 3 − 1 n + 4 ) + ⋅ ⋅ ⋅ + 1 n + p , p 为奇数 ( 1 n + 1 − 1 n + 2 ) + ( 1 n + 3 − 1 n + 4 ) + ⋅ ⋅ ⋅ + 1 n + p − 1 − 1 n + p , p 为偶数 ,         所以 1 n + 1 − 1 n + 2 + 1 n + 3 − ⋅ ⋅ ⋅ + ( − 1 ) p − 1 n + p > 0 , ∀   p ∈ Z + ,当 p 为奇数时,          ∣ s n + p − s n ∣ = 1 n + 1 − ( 1 n + 2 − 1 n + 3 ) − ⋅ ⋅ ⋅ − ( 1 n + p − 1 − 1 n + p ) < 1 n + 1 ,当 p 为偶数时,          ∣ s n + p − s n ∣ = 1 n + 1 − ( 1 n + 2 − 1 n + 3 ) − ⋅ ⋅ ⋅ − ( 1 n + p − 2 − 1 n + p − 1 ) − 1 n + p < 1 n + 1 ,         因此对于任意给定的正数 ϵ ,取正整数 N ≥ 1 ϵ ,当 n > N 时,对任何正整数 p 都有 ∣ s n + p − s n ∣ < 1 n + 1 < 1 n < ϵ ,         根据柯西审敛原理可知,级数收敛 .    ( 2 )  当 n 为 3 的倍数,取 p = 3 n ,则          ∣ s n + p − s n ∣ = ∣ 1 n + 1 + ( 1 n + 2 − 1 n + 3 ) + 1 n + 4 + ( 1 n + 5 − 1 n + 6 ) + ⋅ ⋅ ⋅ + ( 1 4 n − 1 − 1 4 n ) ∣          > 1 n + 1 + 1 n + 4 + ⋅ ⋅ ⋅ + 1 4 n − 2 > 1 4 n + 1 4 n + ⋅ ⋅ ⋅ + 1 4 n = 1 4 ,对 ϵ 0 = 1 4 ,不论 N 为任何正整数,         当 n > N 时且 n 为 3 的倍数,当 p = 3 n 时,有 ∣ s n + p − s n ∣ > ϵ 0 ,根据柯西审敛原理可知,级数发散 .    ( 3 )   ∣ s n + p − s n ∣ = ∣ u n + 1 + u n + 2 + ⋅ ⋅ ⋅ + u n + p ∣ = ∣ s i n ( n + 1 ) x 2 n + 1 + s i n ( n + 2 ) x 2 n + 2 + ⋅ ⋅ ⋅ + s i n ( n + p ) x 2 n + p ∣          ≤ 1 2 n + 1 + 1 2 n + 2 + ⋅ ⋅ ⋅ + 1 2 n + p = 1 2 n + 1 ⋅ 1 − 1 2 p 1 − 1 2 < 1 2 n ,对于任意给定的正数 ϵ ,取正整数 N ≥ l o g 2   1 ϵ ,         当 n > N 时,对一切正整数 p ,都有 ∣ s n + p − s n ∣ < ϵ ,根据柯西收敛原理可知,该级数收敛 .    ( 4 )  因为 u n = 1 3 n + 1 + ( 1 3 n + 2 − 1 3 n + 3 ) > 1 3 n + 1 ≥ 1 4 n ,所以对 ϵ 0 = 1 8 ,不论 n 取什么正整数,取 p = n 时,         有 ∣ s n + p − s n ∣ = u n + 1 + u n + 2 + ⋅ ⋅ ⋅ + u 2 n ≥ 1 4 ( 1 n + 1 + 1 n + 2 + ⋅ ⋅ ⋅ + 1 2 n ) > 1 4 × 1 2 = 1 8 ,因此该级数发散 . \begin{aligned} &\ \ (1)\ |s_{n+p}-s_n|=|u_{n+1}+u_{n+2}+u_{n+3}+\cdot\cdot\cdot+u_{n+p}|=\left|\frac{(-1)^{n+2}}{n+1}+\frac{(-1)^{n+3}}{n+2}+\frac{(-1)^{n+4}}{n+3}+\cdot\cdot\cdot+\frac{(-1)^{n+p+1}}{n+p}\right|=\\\\ &\ \ \ \ \ \ \ \ \left|\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p}\right|,\\\\ &\ \ \ \ \ \ \ \ 因为\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p}=\begin{cases}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+3}-\frac{1}{n+4}\right)+\cdot\cdot\cdot+\frac{1}{n+p},p为奇数\\\\\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+3}-\frac{1}{n+4}\right)+\cdot\cdot\cdot+\frac{1}{n+p-1}-\frac{1}{n+p},p为偶数\end{cases},\\\\ &\ \ \ \ \ \ \ \ 所以\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p} \gt 0,\forall\ p \in Z^+,当p为奇数时,\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}\right)-\cdot\cdot\cdot-\left(\frac{1}{n+p-1}-\frac{1}{n+p}\right) \lt \frac{1}{n+1},当p为偶数时,\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}\right)-\cdot\cdot\cdot-\left(\frac{1}{n+p-2}-\frac{1}{n+p-1}\right)-\frac{1}{n+p} \lt \frac{1}{n+1},\\\\ &\ \ \ \ \ \ \ \ 因此对于任意给定的正数\epsilon,取正整数N \ge \frac{1}{\epsilon},当n \gt N时,对任何正整数p都有|s_{n+p}-s_n| \lt \frac{1}{n+1} \lt \frac{1}{n} \lt \epsilon,\\\\ &\ \ \ \ \ \ \ \ 根据柯西审敛原理可知,级数收敛.\\\\ &\ \ (2)\ 当n为3的倍数,取p=3n,则\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\left|\frac{1}{n+1}+\left(\frac{1}{n+2}-\frac{1}{n+3}\right)+\frac{1}{n+4}+\left(\frac{1}{n+5}-\frac{1}{n+6}\right)+\cdot\cdot\cdot+\left(\frac{1}{4n-1}-\frac{1}{4n}\right)\right| \\\\ &\ \ \ \ \ \ \ \ \gt \frac{1}{n+1}+\frac{1}{n+4}+\cdot\cdot\cdot +\frac{1}{4n-2} \gt \frac{1}{4n}+\frac{1}{4n}+\cdot\cdot\cdot+\frac{1}{4n}=\frac{1}{4},对\epsilon_0=\frac{1}{4},不论N为任何正整数,\\\\ &\ \ \ \ \ \ \ \ 当n \gt N时且n为3的倍数,当p=3n时,有|s_{n+p}-s_n| \gt \epsilon_0,根据柯西审敛原理可知,级数发散.\\\\ &\ \ (3)\ |s_{n+p}-s_n|=|u_{n+1}+u_{n+2}+\cdot\cdot\cdot+u_{n+p}|=\left|\frac{sin(n+1)x}{2^{n+1}}+\frac{sin(n+2)x}{2^{n+2}}+\cdot\cdot\cdot+\frac{sin(n+p)x}{2^{n+p}}\right| \\\\ &\ \ \ \ \ \ \ \ \le \frac{1}{2^{n+1}}+\frac{1}{2^{n+2}}+\cdot\cdot\cdot+\frac{1}{2^{n+p}}=\frac{1}{2^{n+1}}\cdot \frac{1-\frac{1}{2^p}}{1-\frac{1}{2}} \lt \frac{1}{2^n},对于任意给定的正数\epsilon,取正整数N \ge log_2\ \frac{1}{\epsilon},\\\\ &\ \ \ \ \ \ \ \ 当n \gt N时,对一切正整数p,都有|s_{n+p}-s_n| \lt \epsilon,根据柯西收敛原理可知,该级数收敛.\\\\ &\ \ (4)\ 因为u_n=\frac{1}{3n+1}+\left(\frac{1}{3n+2}-\frac{1}{3n+3}\right) \gt \frac{1}{3n+1} \ge \frac{1}{4n},所以对\epsilon_0=\frac{1}{8},不论n取什么正整数,取p=n时,\\\\ &\ \ \ \ \ \ \ \ 有|s_{n+p}-s_n|=u_{n+1}+u_{n+2}+\cdot\cdot\cdot+u_{2n} \ge \frac{1}{4}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdot\cdot\cdot+\frac{1}{2n}\right) \gt \frac{1}{4}\times \frac{1}{2}=\frac{1}{8},因此该级数发散. & \end{aligned}   (1) sn+psn=un+1+un+2+un+3++un+p= n+1(1)n+2+n+2(1)n+3+n+3(1)n+4++n+p(1)n+p+1 =         n+11n+21+n+31+n+p(1)p1         因为n+11n+21+n+31+n+p(1)p1= (n+11n+21)+(n+31n+41)++n+p1p为奇数(n+11n+21)+(n+31n+41)++n+p11n+p1p为偶数        所以n+11n+21+n+31+n+p(1)p1>0 pZ+,当p为奇数时,        sn+psn=n+11(n+21n+31)(n+p11n+p1)<n+11,当p为偶数时,        sn+psn=n+11(n+21n+31)(n+p21n+p11)n+p1<n+11        因此对于任意给定的正数ϵ,取正整数Nϵ1,当n>N时,对任何正整数p都有sn+psn<n+11<n1<ϵ        根据柯西审敛原理可知,级数收敛.  (2) n3的倍数,取p=3n,则        sn+psn= n+11+(n+21n+31)+n+41+(n+51n+61)++(4n114n1)         >n+11+n+41++4n21>4n1+4n1++4n1=41,对ϵ0=41,不论N为任何正整数,        n>N时且n3的倍数,当p=3n时,有sn+psn>ϵ0,根据柯西审敛原理可知,级数发散.  (3) sn+psn=un+1+un+2++un+p= 2n+1sin(n+1)x+2n+2sin(n+2)x++2n+psin(n+p)x         2n+11+2n+21++2n+p1=2n+1112112p1<2n1,对于任意给定的正数ϵ,取正整数Nlog2 ϵ1        n>N时,对一切正整数p,都有sn+psn<ϵ,根据柯西收敛原理可知,该级数收敛.  (4) 因为un=3n+11+(3n+213n+31)>3n+114n1,所以对ϵ0=81,不论n取什么正整数,取p=n时,        sn+psn=un+1+un+2++u2n41(n+11+n+21++2n1)>41×21=81,因此该级数发散.

相关文章:

  • wordpress4 摘要/ue5培训机构哪家强
  • 门户网站建设主要内容/小学生摘抄新闻2024
  • 贵州网络公司网站建设/产品如何在网上推广
  • 做游戏ppt下载网站有哪些内容/网上销售培训课程
  • 漳州网站建设回忆互联客服QQ/线上教育培训机构十大排名
  • 网站建设易网拓/品牌宣传有哪些途径
  • Pytorch优化器全总结(四)常用优化器性能对比 含代码
  • 常用的专业数据恢复软件有哪些?恢复数据就看这10个!
  • ICV:2022年稀释制冷机全球市场规模达2.11亿美元,2028年有望出现突破点
  • 这7个网络设备配置接口基本参数要牢记,从此接口相关配置不用怕!
  • springboot源码解读二-----(自动配置原理解析上)
  • 使用人工智能机器人提高农业效率| 数据标注
  • 金融风控07
  • Java加解密(八)数字证书
  • LeetCode 329. 矩阵中的最长递增路径(C++)*
  • Spark基础【博学谷学习记录】
  • COCO_03 制作COCO格式数据集 dataset 与 dataloader
  • vue3开源项目