高等数学(第七版)同济大学 习题12-1 个人解答
高等数学(第七版)同济大学 习题12-1
1. 写出下列级数的前五项: \begin{aligned}&1. \ 写出下列级数的前五项:&\end{aligned} 1. 写出下列级数的前五项:
( 1 ) ∑ n = 1 ∞ 1 + n 1 + n 2 ; ( 2 ) ∑ n = 1 ∞ 1 ⋅ 3 ⋅ ⋅ ⋅ ⋅ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 n ; ( 3 ) ∑ n = 1 ∞ ( − 1 ) n − 1 5 n ; ( 4 ) ∑ n = 1 ∞ n ! n n . \begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}\frac{1+n}{1+n^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \sum_{n=1}^{\infty}\frac{1\cdot 3\cdot \ \cdot\cdot\cdot \ \cdot (2n-1)}{2\cdot 4 \cdot \ \cdot\cdot\cdot \ \cdot 2n};\\\\ &\ \ (3)\ \ \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{5^n};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \sum_{n=1}^{\infty}\frac{n!}{n^n}. & \end{aligned} (1) n=1∑∞1+n21+n; (2) n=1∑∞2⋅4⋅ ⋅⋅⋅ ⋅2n1⋅3⋅ ⋅⋅⋅ ⋅(2n−1); (3) n=1∑∞5n(−1)n−1; (4) n=1∑∞nnn!.
解:
( 1 ) u 1 = 1 + 1 1 + 1 2 = 1 , u 2 = 1 + 2 1 + 2 2 = 3 5 , u 3 = 1 + 3 1 + 3 2 = 2 5 , u 4 = 1 + 4 1 + 4 2 = 5 17 , u 5 = 1 + 5 1 + 5 2 = 3 13 . ( 2 ) u 1 = 2 ⋅ 1 − 1 2 ⋅ 1 = 1 2 , u 2 = 1 2 ⋅ 2 ⋅ 2 − 1 2 ⋅ 2 = 3 8 , u 3 = 3 8 ⋅ 2 ⋅ 3 − 1 2 ⋅ 3 = 5 16 , u 4 = 5 16 ⋅ 2 ⋅ 4 − 1 2 ⋅ 4 = 35 128 , u 5 = 35 128 ⋅ 2 ⋅ 5 − 1 2 ⋅ 5 = 63 256 . ( 3 ) u 1 = ( − 1 ) 0 5 0 = 1 5 , u 2 = ( − 1 ) 1 5 2 = − 1 25 , u 3 = ( − 1 ) 2 5 3 = 1 125 , u 4 = ( − 1 ) 3 5 4 = − 1 625 , u 5 = ( − 1 ) 4 5 5 = 1 3125 . ( 4 ) u 1 = 1 ! 1 1 = 1 , u 2 = 2 ! 2 2 = 1 2 , u 3 = 3 ! 3 3 = 2 9 , u 4 = 4 ! 4 4 = 3 32 , u 5 = 5 ! 5 5 = 24 625 . \begin{aligned} &\ \ (1)\ u_1=\frac{1+1}{1+1^2}=1,u_2=\frac{1+2}{1+2^2}=\frac{3}{5},u_3=\frac{1+3}{1+3^2}=\frac{2}{5},u_4=\frac{1+4}{1+4^2}=\frac{5}{17},u_5=\frac{1+5}{1+5^2}=\frac{3}{13}.\\\\ &\ \ (2)\ u_1=\frac{2\cdot 1-1}{2\cdot 1}=\frac{1}{2},u_2=\frac{1}{2}\cdot\frac{2\cdot 2-1}{2\cdot 2}=\frac{3}{8},u_3=\frac{3}{8}\cdot \frac{2\cdot 3-1}{2\cdot 3}=\frac{5}{16},u_4=\frac{5}{16}\cdot \frac{2\cdot 4-1}{2\cdot 4}=\frac{35}{128},\\\\ &\ \ \ \ \ \ \ \ u_5=\frac{35}{128}\cdot \frac{2\cdot 5-1}{2\cdot 5}=\frac{63}{256}.\\\\ &\ \ (3)\ u_1=\frac{(-1)^0}{5^0}=\frac{1}{5},u_2=\frac{(-1)^1}{5^2}=-\frac{1}{25},u_3=\frac{(-1)^2}{5^3}=\frac{1}{125},u_4=\frac{(-1)^3}{5^4}=-\frac{1}{625},u_5=\frac{(-1)^4}{5^5}=\frac{1}{3125}.\\\\ &\ \ (4)\ u_1=\frac{1!}{1^1}=1,u_2=\frac{2!}{2^2}=\frac{1}{2},u_3=\frac{3!}{3^3}=\frac{2}{9},u_4=\frac{4!}{4^4}=\frac{3}{32},u_5=\frac{5!}{5^5}=\frac{24}{625}. & \end{aligned} (1) u1=1+121+1=1,u2=1+221+2=53,u3=1+321+3=52,u4=1+421+4=175,u5=1+521+5=133. (2) u1=2⋅12⋅1−1=21,u2=21⋅2⋅22⋅2−1=83,u3=83⋅2⋅32⋅3−1=165,u4=165⋅2⋅42⋅4−1=12835, u5=12835⋅2⋅52⋅5−1=25663. (3) u1=50(−1)0=51,u2=52(−1)1=−251,u3=53(−1)2=1251,u4=54(−1)3=−6251,u5=55(−1)4=31251. (4) u1=111!=1,u2=222!=21,u3=333!=92,u4=444!=323,u5=555!=62524.
2. 根据级数收敛与发散的定义判定下列级数的收敛性: \begin{aligned}&2. \ 根据级数收敛与发散的定义判定下列级数的收敛性:&\end{aligned} 2. 根据级数收敛与发散的定义判定下列级数的收敛性:
( 1 ) ∑ n = 1 ∞ ( n + 1 − n ) ; ( 2 ) 1 1 ⋅ 3 + 1 3 ⋅ 5 + 1 5 ⋅ 7 + ⋅ ⋅ ⋅ + 1 ( 2 n − 1 ) ( 2 n + 1 ) + ⋅ ⋅ ⋅ ; ( 3 ) s i n π 6 + s i n 2 π 6 + ⋅ ⋅ ⋅ + s i n n π 6 + ⋅ ⋅ ⋅ ; ( 4 ) ∑ n = 1 ∞ l n ( 1 + 1 n ) . \begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n});\\\\ &\ \ (2)\ \ \frac{1}{1\cdot 3}+\frac{1}{3\cdot 5}+\frac{1}{5\cdot 7}+\cdot\cdot\cdot+\frac{1}{(2n-1)(2n+1)}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ sin\ \frac{\pi}{6}+sin\ \frac{2\pi}{6}+\cdot\cdot\cdot+sin\ \frac{n\pi}{6}+\cdot\cdot\cdot;\\\\ &\ \ (4)\ \ \sum_{n=1}^{\infty}ln\left(1+\frac{1}{n}\right). & \end{aligned} (1) n=1∑∞(n+1−n); (2) 1⋅31+3⋅51+5⋅71+⋅⋅⋅+(2n−1)(2n+1)1+⋅⋅⋅; (3) sin 6π+sin 62π+⋅⋅⋅+sin 6nπ+⋅⋅⋅; (4) n=1∑∞ln(1+n1).
解:
( 1 ) 因为 s n = ( 2 − 1 ) + ( 3 − 2 ) + ⋅ ⋅ ⋅ + ( n + 1 − n ) = n + 1 − 1 , lim n → ∞ s n = ∞ ,根据定义可知 级数 ∑ n = 1 ∞ ( n + 1 − n ) 发散 . ( 2 ) 因为 u n = 1 ( 2 n − 1 ) ( 2 n + 1 ) = 1 2 ( 1 2 n − 1 − 1 2 n + 1 ) ,则 s n = 1 2 [ ( 1 − 1 3 ) + ( 1 3 − 1 5 ) + ⋅ ⋅ ⋅ + ( 1 2 n − 1 − 1 2 n + 1 ) ] = 1 2 ( 1 − 1 2 n + 1 ) , lim n → ∞ s n = 1 2 , 所以根据定义可知级数收敛 . ( 3 ) 因为 u n = s i n n π 6 = 2 s i n π 12 s i n n π 6 2 s i n π 12 = c o s 2 n − 1 12 π − c o s 2 n + 1 12 π 2 s i n π 12 ,则 s n = 1 2 s i n π 12 [ ( c o s π 12 − c o s 3 π 12 ) + ( c o s 3 π 12 − c o s 5 π 12 ) + ⋅ ⋅ ⋅ + ( c o s 2 n − 1 12 π − c o s 2 n + 1 12 π ) ] = 1 2 s i n π 12 ( c o s π 12 − c o s 2 n + 1 12 π ) ,当 n → ∞ 时, c o s 2 n + 1 12 π 极限不存在,所以 s n 的极限不存在,级数发散 . ( 4 ) 因为 s n = l n 2 + l n 3 2 + l n 4 3 + ⋅ ⋅ ⋅ + l n n + 1 n = l n ( n + 1 ) , lim n → ∞ s n = ∞ ,所以级数发散 . \begin{aligned} &\ \ (1)\ 因为s_n=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+\cdot\cdot\cdot+(\sqrt{n+1}-\sqrt{n})=\sqrt{n+1}-1,\lim_{n\rightarrow \infty}s_n=\infty,根据定义可知\\\\ &\ \ \ \ \ \ \ \ 级数\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})发散.\\\\ &\ \ (2)\ 因为u_n=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right),则\\\\ &\ \ \ \ \ \ \ \ s_n=\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdot\cdot\cdot+\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)\right]=\frac{1}{2}\left(1-\frac{1}{2n+1}\right),\lim_{n \rightarrow \infty}s_n=\frac{1}{2},\\\\ &\ \ \ \ \ \ \ \ 所以根据定义可知级数收敛.\\\\ &\ \ (3)\ 因为u_n=sin\ \frac{n\pi}{6}=\frac{2sin\ \frac{\pi}{12}sin\ \frac{n\pi}{6}}{2sin\ \frac{\pi}{12}}=\frac{cos\ \frac{2n-1}{12}\pi-cos\ \frac{2n+1}{12}\pi}{2sin\ \frac{\pi}{12}},则\\\\ &\ \ \ \ \ \ \ \ s_n=\frac{1}{2sin\ \frac{\pi}{12}}\left[\left(cos\ \frac{\pi}{12}-cos\ \frac{3\pi}{12}\right)+\left(cos\ \frac{3\pi}{12}-cos\ \frac{5\pi}{12}\right)+\cdot\cdot\cdot+\left(cos\ \frac{2n-1}{12}\pi-cos\ \frac{2n+1}{12}\pi\right)\right]=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{2sin\ \frac{\pi}{12}}\left(cos\ \frac{\pi}{12}-cos\ \frac{2n+1}{12}\pi\right),当n\rightarrow \infty时,cos\ \frac{2n+1}{12}\pi极限不存在,所以s_n的极限不存在,级数发散.\\\\ &\ \ (4)\ 因为s_n=ln\ 2+ln\ \frac{3}{2}+ln\ \frac{4}{3}+\cdot\cdot\cdot+ln\ \frac{n+1}{n}=ln(n+1),\lim_{n\rightarrow \infty}s_n=\infty,所以级数发散. & \end{aligned} (1) 因为sn=(2−1)+(3−2)+⋅⋅⋅+(n+1−n)=n+1−1,n→∞limsn=∞,根据定义可知 级数n=1∑∞(n+1−n)发散. (2) 因为un=(2n−1)(2n+1)1=21(2n−11−2n+11),则 sn=21[(1−31)+(31−51)+⋅⋅⋅+(2n−11−2n+11)]=21(1−2n+11),n→∞limsn=21, 所以根据定义可知级数收敛. (3) 因为un=sin 6nπ=2sin 12π2sin 12πsin 6nπ=2sin 12πcos 122n−1π−cos 122n+1π,则 sn=2sin 12π1[(cos 12π−cos 123π)+(cos 123π−cos 125π)+⋅⋅⋅+(cos 122n−1π−cos 122n+1π)]= 2sin 12π1(cos 12π−cos 122n+1π),当n→∞时,cos 122n+1π极限不存在,所以sn的极限不存在,级数发散. (4) 因为sn=ln 2+ln 23+ln 34+⋅⋅⋅+ln nn+1=ln(n+1),n→∞limsn=∞,所以级数发散.
3. 判定下列级数的收敛性: \begin{aligned}&3. \ 判定下列级数的收敛性:&\end{aligned} 3. 判定下列级数的收敛性:
( 1 ) − 8 9 + 8 2 9 2 − 8 3 9 3 + ⋅ ⋅ ⋅ + ( − 1 ) n 8 n 9 n + ⋅ ⋅ ⋅ ; ( 2 ) 1 3 + 1 6 + 1 9 + ⋅ ⋅ ⋅ + 1 3 n + ⋅ ⋅ ⋅ ; ( 3 ) 1 3 + 1 3 + 1 3 3 + ⋅ ⋅ ⋅ + 1 3 n + ⋅ ⋅ ⋅ ; ( 4 ) 3 2 + 3 2 2 2 + 3 3 2 3 + ⋅ ⋅ ⋅ + 3 n 2 n + ⋅ ⋅ ⋅ ; ( 5 ) ( 1 2 + 1 3 ) + ( 1 2 2 + 1 3 2 ) + ( 1 2 3 + 1 3 3 ) + ⋅ ⋅ ⋅ + ( 1 2 n + 1 3 n ) + ⋅ ⋅ ⋅ . \begin{aligned} &\ \ (1)\ \ -\frac{8}{9}+\frac{8^2}{9^2}-\frac{8^3}{9^3}+\cdot\cdot\cdot+(-1)^n\frac{8^n}{9^n}+\cdot\cdot\cdot;\\\\ &\ \ (2)\ \ \frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\cdot\cdot\cdot+\frac{1}{3n}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ \frac{1}{3}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt[3]{3}}+\cdot\cdot\cdot+\frac{1}{\sqrt[n]{3}}+\cdot\cdot\cdot;\\\\ &\ \ (4)\ \ \frac{3}{2}+\frac{3^2}{2^2}+\frac{3^3}{2^3}+\cdot\cdot\cdot+\frac{3^n}{2^n}+\cdot\cdot\cdot;\\\\ &\ \ (5)\ \ \left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}\right)+\left(\frac{1}{2^3}+\frac{1}{3^3}\right)+\cdot\cdot\cdot+\left(\frac{1}{2^n}+\frac{1}{3^n}\right)+\cdot\cdot\cdot. & \end{aligned} (1) −98+9282−9383+⋅⋅⋅+(−1)n9n8n+⋅⋅⋅; (2) 31+61+91+⋅⋅⋅+3n1+⋅⋅⋅; (3) 31+31+331+⋅⋅⋅+n31+⋅⋅⋅; (4) 23+2232+2333+⋅⋅⋅+2n3n+⋅⋅⋅; (5) (21+31)+(221+321)+(231+331)+⋅⋅⋅+(2n1+3n1)+⋅⋅⋅.
解:
( 1 ) 该级数为等比级数,公比为 q = − 8 9 ,因为 ∣ q ∣ < 1 ,所以该级数收敛 . ( 2 ) 该级数的部分和 s n = 1 3 + 1 6 + 1 9 + ⋅ ⋅ ⋅ + 1 3 n = 1 3 ( 1 + 1 2 + 1 3 + ⋅ ⋅ ⋅ + 1 n ) , 因 lim n → ∞ ( 1 + 1 2 + 1 3 + ⋅ ⋅ ⋅ + 1 n ) = + ∞ , lim n → ∞ s n = + ∞ ,所以该级数发散 . ( 3 ) 该级数的一般项 u n = 1 3 n ,因 lim n → ∞ u n = lim n → ∞ ( 1 3 ) 1 n = 1 ,不满足收敛的必要条件,所以该级数发散 . ( 4 ) 该级数为等比级数,公比为 q = 3 2 ,因为 ∣ q ∣ > 1 ,所以该级数发散 . ( 5 ) 该级数的一般项 u n = 1 2 n + 1 3 n ,因为 ∑ n = 1 ∞ 1 2 n 和 ∑ n = 1 ∞ 1 3 n 都为等比级数,公比分别为 q = 1 2 , q = 1 3 , 因为 ∣ q ∣ < 1 ,所以 ∑ n = 1 ∞ 1 2 n 和 ∑ n = 1 ∞ 1 3 n 都收敛,根据收敛级数性质可知,级数收敛 . \begin{aligned} &\ \ (1)\ 该级数为等比级数,公比为q=-\frac{8}{9},因为|q| \lt 1,所以该级数收敛.\\\\ &\ \ (2)\ 该级数的部分和s_n=\frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\cdot\cdot\cdot+\frac{1}{3n}=\frac{1}{3}\left(1+\frac{1}{2}+\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{n}\right),\\\\ &\ \ \ \ \ \ \ \ 因\lim_{n\rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{n}\right)=+\infty,\lim_{n\rightarrow \infty}s_n=+\infty,所以该级数发散.\\\\ &\ \ (3)\ 该级数的一般项u_n=\frac{1}{\sqrt[n]{3}},因\lim_{n\rightarrow \infty}u_n=\lim_{n\rightarrow \infty}\left(\frac{1}{3}\right)^{\frac{1}{n}}=1,不满足收敛的必要条件,所以该级数发散.\\\\ &\ \ (4)\ 该级数为等比级数,公比为q=\frac{3}{2},因为|q| \gt 1,所以该级数发散.\\\\ &\ \ (5)\ 该级数的一般项u_n=\frac{1}{2^n}+\frac{1}{3^n},因为\sum_{n=1}^{\infty}\frac{1}{2^n}和\sum_{n=1}^{\infty}\frac{1}{3^n}都为等比级数,公比分别为q=\frac{1}{2},q=\frac{1}{3},\\\\ &\ \ \ \ \ \ \ \ 因为|q| \lt 1,所以\sum_{n=1}^{\infty}\frac{1}{2^n}和\sum_{n=1}^{\infty}\frac{1}{3^n}都收敛,根据收敛级数性质可知,级数收敛. & \end{aligned} (1) 该级数为等比级数,公比为q=−98,因为∣q∣<1,所以该级数收敛. (2) 该级数的部分和sn=31+61+91+⋅⋅⋅+3n1=31(1+21+31+⋅⋅⋅+n1), 因n→∞lim(1+21+31+⋅⋅⋅+n1)=+∞,n→∞limsn=+∞,所以该级数发散. (3) 该级数的一般项un=n31,因n→∞limun=n→∞lim(31)n1=1,不满足收敛的必要条件,所以该级数发散. (4) 该级数为等比级数,公比为q=23,因为∣q∣>1,所以该级数发散. (5) 该级数的一般项un=2n1+3n1,因为n=1∑∞2n1和n=1∑∞3n1都为等比级数,公比分别为q=21,q=31, 因为∣q∣<1,所以n=1∑∞2n1和n=1∑∞3n1都收敛,根据收敛级数性质可知,级数收敛.
4. 利用柯西审敛原理判定下列级数的收敛性: \begin{aligned}&4. \ 利用柯西审敛原理判定下列级数的收敛性:&\end{aligned} 4. 利用柯西审敛原理判定下列级数的收敛性:
( 1 ) ∑ n = 1 ∞ ( − 1 ) n + 1 n ; ( 2 ) 1 + 1 2 − 1 3 + 1 4 + 1 5 − 1 6 + ⋅ ⋅ ⋅ + 1 3 n − 2 + 1 3 n − 1 − 1 3 n + ⋅ ⋅ ⋅ ; ( 3 ) ∑ n = 1 ∞ s i n n x 2 n ; ( 4 ) ∑ n = 0 ∞ ( 1 3 n + 1 + 1 3 n + 2 − 1 3 n + 3 ) . \begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n};\\\\ &\ \ (2)\ \ 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{3n-2}+\frac{1}{3n-1}-\frac{1}{3n}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ \sum_{n=1}^{\infty}\frac{sin\ nx}{2^n};\\\\ &\ \ (4)\ \ \sum_{n=0}^{\infty}\left(\frac{1}{3n+1}+\frac{1}{3n+2}-\frac{1}{3n+3}\right). & \end{aligned} (1) n=1∑∞n(−1)n+1; (2) 1+21−31+41+51−61+⋅⋅⋅+3n−21+3n−11−3n1+⋅⋅⋅; (3) n=1∑∞2nsin nx; (4) n=0∑∞(3n+11+3n+21−3n+31).
解:
( 1 ) ∣ s n + p − s n ∣ = ∣ u n + 1 + u n + 2 + u n + 3 + ⋅ ⋅ ⋅ + u n + p ∣ = ∣ ( − 1 ) n + 2 n + 1 + ( − 1 ) n + 3 n + 2 + ( − 1 ) n + 4 n + 3 + ⋅ ⋅ ⋅ + ( − 1 ) n + p + 1 n + p ∣ = ∣ 1 n + 1 − 1 n + 2 + 1 n + 3 − ⋅ ⋅ ⋅ + ( − 1 ) p − 1 n + p ∣ , 因为 1 n + 1 − 1 n + 2 + 1 n + 3 − ⋅ ⋅ ⋅ + ( − 1 ) p − 1 n + p = { ( 1 n + 1 − 1 n + 2 ) + ( 1 n + 3 − 1 n + 4 ) + ⋅ ⋅ ⋅ + 1 n + p , p 为奇数 ( 1 n + 1 − 1 n + 2 ) + ( 1 n + 3 − 1 n + 4 ) + ⋅ ⋅ ⋅ + 1 n + p − 1 − 1 n + p , p 为偶数 , 所以 1 n + 1 − 1 n + 2 + 1 n + 3 − ⋅ ⋅ ⋅ + ( − 1 ) p − 1 n + p > 0 , ∀ p ∈ Z + ,当 p 为奇数时, ∣ s n + p − s n ∣ = 1 n + 1 − ( 1 n + 2 − 1 n + 3 ) − ⋅ ⋅ ⋅ − ( 1 n + p − 1 − 1 n + p ) < 1 n + 1 ,当 p 为偶数时, ∣ s n + p − s n ∣ = 1 n + 1 − ( 1 n + 2 − 1 n + 3 ) − ⋅ ⋅ ⋅ − ( 1 n + p − 2 − 1 n + p − 1 ) − 1 n + p < 1 n + 1 , 因此对于任意给定的正数 ϵ ,取正整数 N ≥ 1 ϵ ,当 n > N 时,对任何正整数 p 都有 ∣ s n + p − s n ∣ < 1 n + 1 < 1 n < ϵ , 根据柯西审敛原理可知,级数收敛 . ( 2 ) 当 n 为 3 的倍数,取 p = 3 n ,则 ∣ s n + p − s n ∣ = ∣ 1 n + 1 + ( 1 n + 2 − 1 n + 3 ) + 1 n + 4 + ( 1 n + 5 − 1 n + 6 ) + ⋅ ⋅ ⋅ + ( 1 4 n − 1 − 1 4 n ) ∣ > 1 n + 1 + 1 n + 4 + ⋅ ⋅ ⋅ + 1 4 n − 2 > 1 4 n + 1 4 n + ⋅ ⋅ ⋅ + 1 4 n = 1 4 ,对 ϵ 0 = 1 4 ,不论 N 为任何正整数, 当 n > N 时且 n 为 3 的倍数,当 p = 3 n 时,有 ∣ s n + p − s n ∣ > ϵ 0 ,根据柯西审敛原理可知,级数发散 . ( 3 ) ∣ s n + p − s n ∣ = ∣ u n + 1 + u n + 2 + ⋅ ⋅ ⋅ + u n + p ∣ = ∣ s i n ( n + 1 ) x 2 n + 1 + s i n ( n + 2 ) x 2 n + 2 + ⋅ ⋅ ⋅ + s i n ( n + p ) x 2 n + p ∣ ≤ 1 2 n + 1 + 1 2 n + 2 + ⋅ ⋅ ⋅ + 1 2 n + p = 1 2 n + 1 ⋅ 1 − 1 2 p 1 − 1 2 < 1 2 n ,对于任意给定的正数 ϵ ,取正整数 N ≥ l o g 2 1 ϵ , 当 n > N 时,对一切正整数 p ,都有 ∣ s n + p − s n ∣ < ϵ ,根据柯西收敛原理可知,该级数收敛 . ( 4 ) 因为 u n = 1 3 n + 1 + ( 1 3 n + 2 − 1 3 n + 3 ) > 1 3 n + 1 ≥ 1 4 n ,所以对 ϵ 0 = 1 8 ,不论 n 取什么正整数,取 p = n 时, 有 ∣ s n + p − s n ∣ = u n + 1 + u n + 2 + ⋅ ⋅ ⋅ + u 2 n ≥ 1 4 ( 1 n + 1 + 1 n + 2 + ⋅ ⋅ ⋅ + 1 2 n ) > 1 4 × 1 2 = 1 8 ,因此该级数发散 . \begin{aligned} &\ \ (1)\ |s_{n+p}-s_n|=|u_{n+1}+u_{n+2}+u_{n+3}+\cdot\cdot\cdot+u_{n+p}|=\left|\frac{(-1)^{n+2}}{n+1}+\frac{(-1)^{n+3}}{n+2}+\frac{(-1)^{n+4}}{n+3}+\cdot\cdot\cdot+\frac{(-1)^{n+p+1}}{n+p}\right|=\\\\ &\ \ \ \ \ \ \ \ \left|\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p}\right|,\\\\ &\ \ \ \ \ \ \ \ 因为\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p}=\begin{cases}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+3}-\frac{1}{n+4}\right)+\cdot\cdot\cdot+\frac{1}{n+p},p为奇数\\\\\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+3}-\frac{1}{n+4}\right)+\cdot\cdot\cdot+\frac{1}{n+p-1}-\frac{1}{n+p},p为偶数\end{cases},\\\\ &\ \ \ \ \ \ \ \ 所以\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p} \gt 0,\forall\ p \in Z^+,当p为奇数时,\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}\right)-\cdot\cdot\cdot-\left(\frac{1}{n+p-1}-\frac{1}{n+p}\right) \lt \frac{1}{n+1},当p为偶数时,\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}\right)-\cdot\cdot\cdot-\left(\frac{1}{n+p-2}-\frac{1}{n+p-1}\right)-\frac{1}{n+p} \lt \frac{1}{n+1},\\\\ &\ \ \ \ \ \ \ \ 因此对于任意给定的正数\epsilon,取正整数N \ge \frac{1}{\epsilon},当n \gt N时,对任何正整数p都有|s_{n+p}-s_n| \lt \frac{1}{n+1} \lt \frac{1}{n} \lt \epsilon,\\\\ &\ \ \ \ \ \ \ \ 根据柯西审敛原理可知,级数收敛.\\\\ &\ \ (2)\ 当n为3的倍数,取p=3n,则\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\left|\frac{1}{n+1}+\left(\frac{1}{n+2}-\frac{1}{n+3}\right)+\frac{1}{n+4}+\left(\frac{1}{n+5}-\frac{1}{n+6}\right)+\cdot\cdot\cdot+\left(\frac{1}{4n-1}-\frac{1}{4n}\right)\right| \\\\ &\ \ \ \ \ \ \ \ \gt \frac{1}{n+1}+\frac{1}{n+4}+\cdot\cdot\cdot +\frac{1}{4n-2} \gt \frac{1}{4n}+\frac{1}{4n}+\cdot\cdot\cdot+\frac{1}{4n}=\frac{1}{4},对\epsilon_0=\frac{1}{4},不论N为任何正整数,\\\\ &\ \ \ \ \ \ \ \ 当n \gt N时且n为3的倍数,当p=3n时,有|s_{n+p}-s_n| \gt \epsilon_0,根据柯西审敛原理可知,级数发散.\\\\ &\ \ (3)\ |s_{n+p}-s_n|=|u_{n+1}+u_{n+2}+\cdot\cdot\cdot+u_{n+p}|=\left|\frac{sin(n+1)x}{2^{n+1}}+\frac{sin(n+2)x}{2^{n+2}}+\cdot\cdot\cdot+\frac{sin(n+p)x}{2^{n+p}}\right| \\\\ &\ \ \ \ \ \ \ \ \le \frac{1}{2^{n+1}}+\frac{1}{2^{n+2}}+\cdot\cdot\cdot+\frac{1}{2^{n+p}}=\frac{1}{2^{n+1}}\cdot \frac{1-\frac{1}{2^p}}{1-\frac{1}{2}} \lt \frac{1}{2^n},对于任意给定的正数\epsilon,取正整数N \ge log_2\ \frac{1}{\epsilon},\\\\ &\ \ \ \ \ \ \ \ 当n \gt N时,对一切正整数p,都有|s_{n+p}-s_n| \lt \epsilon,根据柯西收敛原理可知,该级数收敛.\\\\ &\ \ (4)\ 因为u_n=\frac{1}{3n+1}+\left(\frac{1}{3n+2}-\frac{1}{3n+3}\right) \gt \frac{1}{3n+1} \ge \frac{1}{4n},所以对\epsilon_0=\frac{1}{8},不论n取什么正整数,取p=n时,\\\\ &\ \ \ \ \ \ \ \ 有|s_{n+p}-s_n|=u_{n+1}+u_{n+2}+\cdot\cdot\cdot+u_{2n} \ge \frac{1}{4}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdot\cdot\cdot+\frac{1}{2n}\right) \gt \frac{1}{4}\times \frac{1}{2}=\frac{1}{8},因此该级数发散. & \end{aligned} (1) ∣sn+p−sn∣=∣un+1+un+2+un+3+⋅⋅⋅+un+p∣= n+1(−1)n+2+n+2(−1)n+3+n+3(−1)n+4+⋅⋅⋅+n+p(−1)n+p+1 = n+11−n+21+n+31−⋅⋅⋅+n+p(−1)p−1 , 因为n+11−n+21+n+31−⋅⋅⋅+n+p(−1)p−1=⎩ ⎨ ⎧(n+11−n+21)+(n+31−n+41)+⋅⋅⋅+n+p1,p为奇数(n+11−n+21)+(n+31−n+41)+⋅⋅⋅+n+p−11−n+p1,p为偶数, 所以n+11−n+21+n+31−⋅⋅⋅+n+p(−1)p−1>0,∀ p∈Z+,当p为奇数时, ∣sn+p−sn∣=n+11−(n+21−n+31)−⋅⋅⋅−(n+p−11−n+p1)<n+11,当p为偶数时, ∣sn+p−sn∣=n+11−(n+21−n+31)−⋅⋅⋅−(n+p−21−n+p−11)−n+p1<n+11, 因此对于任意给定的正数ϵ,取正整数N≥ϵ1,当n>N时,对任何正整数p都有∣sn+p−sn∣<n+11<n1<ϵ, 根据柯西审敛原理可知,级数收敛. (2) 当n为3的倍数,取p=3n,则 ∣sn+p−sn∣= n+11+(n+21−n+31)+n+41+(n+51−n+61)+⋅⋅⋅+(4n−11−4n1) >n+11+n+41+⋅⋅⋅+4n−21>4n1+4n1+⋅⋅⋅+4n1=41,对ϵ0=41,不论N为任何正整数, 当n>N时且n为3的倍数,当p=3n时,有∣sn+p−sn∣>ϵ0,根据柯西审敛原理可知,级数发散. (3) ∣sn+p−sn∣=∣un+1+un+2+⋅⋅⋅+un+p∣= 2n+1sin(n+1)x+2n+2sin(n+2)x+⋅⋅⋅+2n+psin(n+p)x ≤2n+11+2n+21+⋅⋅⋅+2n+p1=2n+11⋅1−211−2p1<2n1,对于任意给定的正数ϵ,取正整数N≥log2 ϵ1, 当n>N时,对一切正整数p,都有∣sn+p−sn∣<ϵ,根据柯西收敛原理可知,该级数收敛. (4) 因为un=3n+11+(3n+21−3n+31)>3n+11≥4n1,所以对ϵ0=81,不论n取什么正整数,取p=n时, 有∣sn+p−sn∣=un+1+un+2+⋅⋅⋅+u2n≥41(n+11+n+21+⋅⋅⋅+2n1)>41×21=81,因此该级数发散.