当前位置: 首页 > news >正文

YOLOV8——快速训练指南(上手教程、自定义数据训练)

概述    

    本篇主要用于说明如何使用自己的训练数据,快速在YOLOV8 框架上进行训练。当前(20230116)官方文档和网上的资源主要都是在开源的数据集上进行测试,对于算法“小白”或者“老鸟”如何快速应用到自己的项目中,这个单纯看官方文档显得有点凌乱,因为YOLOV8 不再致力于做一个单纯算法,而是想要做一个一统(分类、检测、分割且多种模型)的框架。下面以检测为例。

    安装,官方提供了完整的安装方式:Quickstart - Ultralytics YOLOv8 Docs 如果希望不安装直接使用,参考本文第七节。 

详细

1、标注

        准备自己的数据,数据的标注格式和YOLOV5没有分别,一般工业还是需要使用如labelme等标注,格式为coco格式(class_id x y w x)xywx均需要归一化,类别号从0开始,一个框一行。

2、目录的组织形式:

        低阶使用, 可无痛迁移YOLO6 YOLOv7

        以“images” 命名图片路径,标签路径仅仅是将“images” 变为“labels”;代码自动对应images和labels,所以一张图片的标签需要和图片同名(如果没有对应的label 就是认为是背景图,没有目标)。

        高阶使用, YOLOV6 YOLOv7 当前某些方式不支持。

        20230116 主要的源码路径为:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/dataloaders/v5loader.py

函数“LoadImages”用于推理,函数“LoadImagesAndLabels” 用于训练,但是并没有统一支持的数据目录存放格式。

        1)使用文件夹(列表)文件夹存储所有的训练图片(由于磁盘文件系统,单个文件夹文件过多影响吞吐速度)。

单个文件夹对应配置文件的写法

path: ../datasets/VOC
train: # train images (relative to 'path')
  - images/train2007
val: # val images (relative to 'path')
  - images/test2007
test: # test images (optional)
  - images/test2007

多个文件夹对应配置文件的写法

path: ../datasets/VOC
train: # train images (relative to 'path')
  - images/train2012
  - images/train2007
val: # val images (relative to 'path')
  - images/test2007
test: # test images (optional)
  - images/test2007

2)使用文本文件(列表)存储图片

单个文本文件对应配置文件的写法

path: ../datasets/VOC
train: # train images (relative to 'path')
  - train2017.txt
val: # val images (relative to 'path')
  - val2017.txt
test: # test images (optional)
  - test-dev2017.txt

多个文本文件对应配置文件的写法(目前20230116仅detect 推理支持,训练不支持,需要修改源码)

path: ../datasets/VOC
train: # train images (relative to 'path')
  - train2017.txt
  - train2012.txt
val: # val images (relative to 'path')
  - val2017.txt
test: # test images (optional)
  - test-dev2017.txt

参考源代码:

1)函数“LoadImages”用于推理

注意:

*可以为多个文件夹路径,为相对路径

*文件名列表文本文件只支持一个文本文件,路径为绝对路径

*可以同时存在一个文本文件+若干目录

2)函数“LoadImages”用于训练和评测

注意:

*可以为多个文件夹路径,为相对路径

*可以为多个文件名列表文本文件,路径为:绝对路径,或者相对路径但是是相对文本文件的路径!

*可以同时存在若干文本文件+若干目录

3、编写data yaml 文件

可以参考:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/datasets/coco128.yaml

4、编写模型yaml 文件 或者用预训练模型

    这里的yaml 文件其实就是利用现有的模型组件重新搭建一个新的网络,可以参照如下,或者简单就用预训练的模型(只需要改为yolov8n.pt)。官方配置文件:ultralytics/yolov8n.yaml at main · ultralytics/ultralytics · GitHub

5、编写训练参数文件(可选、高阶)

    官方终于把所有的配置项目全部解耦到配置文件,不再像YOLOV5一样,一部分在配置文件,一部分在train.py 的启动参数中。主要修改如下三个大的代码段。其中有个需要注意的代码段就是“close_mosaic”这个参数,关于这个的讨论见我的另一个文章:yolov5 mosaic相关,目前要实现一个改进的mosaic,预计后续后评测效果后会考虑开源。官方配置文件:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml。

    Note:

    *如果你用的Python 接口,那么目前20230116官方无法直接传参进去修改这个配置文件或者引用新的配置文件,是写死的(下面第一张图)。https://github.com/ultralytics/ultralytics/blob/4962733b49d45e1ae6e7b3ca367e9af9756758bc/ultralytics/yolo/utils/__init__.py

    *如果是cli接口,那么可以复写这个配置文件,下面第二、三张图。https://github.com/ultralytics/ultralytics/blob/c42e44a0211881b661b47050ac2727658078497d/docs/cli.md

    *当然常用的修改参数也是可以传参修改的,见:Configuration - Ultralytics YOLOv8 Docs,下面第四、五张图。 Detection - Ultralytics YOLOv8 Docs。

    *个人还是建议通过配置文件的方式管理训练过程,这样可以快速的追溯每一个实验。 完整的命令就是:

 yolo task=init  # 可选,复制一份默认配置到当前目录供修改。

 yolo  data=coco128.yaml model=yolov8n.pt  cfg=exp1.yaml #一旦用了cfg参数 命令行的task=detect、 mode=train 当前版本不再生效

6、训练脚本

7、高阶使用

        如果你想改源码,或者不希望通过pip 的方式,污染环境,还是希望安装源码,然后python xxxx.py 运行。那么需要:

1)git clone 源码

2)新建(复制)一个自己的调用脚本。

源码链接:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cli.py。复制到根目录 。

3)根目录正常调用 python cli.py cfg=/home/xxx/…/exp1.yaml 这个yaml 就是https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml。

原理:

        其实官方也是通过这两个文件完成的打包和调用,主要就是这句话:

1)https://github.com/ultralytics/ultralytics/blob/main/setup.py

2)https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cli.py

 

相关文章:

  • wordpress做外贸站/太原百度网站快速优化
  • 如何做网站内链/百度推广关键词
  • 做程序教程网站赚钱吗/百度站长工具排名
  • 品牌网站制作流程图/怎么收录网站
  • 河北盛通公路建设有限公司网站/成品网站1688入口的功能介绍
  • 科学做视频网站/哪里有竞价推广托管
  • 虹科新闻 | 虹科与丹麦Eupry正式建立合作伙伴关系
  • Linux和Windows修改pip源
  • 安装zsh
  • 拉伯证券|年内第二大解禁周来袭
  • Unity 之 Addressable可寻址系统 -- 代码加载介绍 -- 进阶(一)
  • Openresty宏观概述笔记
  • 类模板的友元
  • Kettle源码启动运行
  • 独立产品灵感周刊 DecoHack #044 - 新的一年如何管理你的时间
  • opencv开发之numpy使用
  • 9.6 容器适配器
  • MATLAB算法实战应用案例精讲-【图像处理】小目标检测(补充篇)(附python代码实现)