当前位置: 首页 > news >正文

KG-构建:知识图谱基础代码构建(医疗向)

项目来源是GitHub上面刘老师做的一个基于知识医疗图谱的问答机器人,本文主要关注点放在建立知识图谱这一侧。这个项目并且将数据集也开源了放在dict和data文件夹下,让我觉得真的很难得,得给老师一个star!

https://github.com/liuhuanyong/QASystemOnMedicalKG

data_spider.py

首先是数据获取阶段,解读刘老师的爬虫项目。 

import urllib.request
import urllib.parse
from lxml import etree
import pymongo
import re
 
 
class CrimeSpider:
    def __init__(self):
        self.conn = pymongo.MongoClient()
        self.db = self.conn['medical']
        self.col = self.db['data']
 
    '''根据url,请求html'''
    def get_html(self, url):
        headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) '
                                 'Chrome/51.0.2704.63 Safari/537.36'}
        req = urllib.request.Request(url=url, headers=headers)
        res = urllib.request.urlopen(req)
        html = res.read().decode('gbk')
        return html
 
    '''url解析'''
    def url_parser(self, content):
        selector = etree.HTML(content)
        urls = ['http://www.anliguan.com' + i for i in  selector.xpath('//h2[@class="item-title"]/a/@href')]
        return urls
 
    '''测试'''
    def spider_main(self):
        for page in range(1, 11000):
            try:
                basic_url = 'http://jib.xywy.com/il_sii/gaishu/%s.htm'%page
                cause_url = 'http://jib.xywy.com/il_sii/cause/%s.htm'%page
                prevent_url = 'http://jib.xywy.com/il_sii/prevent/%s.htm'%page
                symptom_url = 'http://jib.xywy.com/il_sii/symptom/%s.htm'%page
                inspect_url = 'http://jib.xywy.com/il_sii/inspect/%s.htm'%page
                treat_url = 'http://jib.xywy.com/il_sii/treat/%s.htm'%page
                food_url = 'http://jib.xywy.com/il_sii/food/%s.htm'%page
                drug_url = 'http://jib.xywy.com/il_sii/drug/%s.htm'%page
                data = {}
                data['url'] = basic_url
                data['basic_info'] = self.basicinfo_spider(basic_url)
                data['cause_info'] =  self.common_spider(cause_url)
                data['prevent_info'] =  self.common_spider(prevent_url)
                data['symptom_info'] = self.symptom_spider(symptom_url)
                data['inspect_info'] = self.inspect_spider(inspect_url)
                data['treat_info'] = self.treat_spider(treat_url)
                data['food_info'] = self.food_spider(food_url)
                data['drug_info'] = self.drug_spider(drug_url)
                print(page, basic_url)
                self.col.insert(data)
 
            except Exception as e:
                print(e, page)
        return
 
    '''基本信息解析'''
    def basicinfo_spider(self, url):
        html = self.get_html(url)
        selector = etree.HTML(html)
        title = selector.xpath('//title/text()')[0]
        category = selector.xpath('//div[@class="wrap mt10 nav-bar"]/a/text()')
        desc = selector.xpath('//div[@class="jib-articl-con jib-lh-articl"]/p/text()')
        ps = selector.xpath('//div[@class="mt20 articl-know"]/p')
        infobox = []
        for p in ps:
            info = p.xpath('string(.)').replace('\r','').replace('\n','').replace('\xa0', '').replace('   ', '').replace('\t','')
            infobox.append(info)
        basic_data = {}
        basic_data['category'] = category
        basic_data['name'] = title.split('的简介')[0]
        basic_data['desc'] = desc
        basic_data['attributes'] = infobox
        return basic_data
 
    '''treat_infobox治疗解析'''
    def treat_spider(self, url):
        html = self.get_html(url)
        selector = etree.HTML(html)
        ps = selector.xpath('//div[starts-with(@class,"mt20 articl-know")]/p')
        infobox = []
        for p in ps:
            info = p.xpath('string(.)').replace('\r','').replace('\n','').replace('\xa0', '').replace('   ', '').replace('\t','')
            infobox.append(info)
        return infobox
 
    '''treat_infobox治疗解析'''
    def drug_spider(self, url):
        html = self.get_html(url)
        selector = etree.HTML(html)
        drugs = [i.replace('\n','').replace('\t', '').replace(' ','') for i in selector.xpath('//div[@class="fl drug-pic-rec mr30"]/p/a/text()')]
        return drugs
 
    '''food治疗解析'''
    def food_spider(self, url):
        html = self.get_html(url)
        selector = etree.HTML(html)
        divs = selector.xpath('//div[@class="diet-img clearfix mt20"]')
        try:
            food_data = {}
            food_data['good'] = divs[0].xpath('./div/p/text()')
            food_data['bad'] = divs[1].xpath('./div/p/text()')
            food_data['recommand'] = divs[2].xpath('./div/p/text()')
        except:
            return {}
 
        return food_data
 
    '''症状信息解析'''
    def symptom_spider(self, url):
        html = self.get_html(url)
        selector = etree.HTML(html)
        symptoms = selector.xpath('//a[@class="gre" ]/text()')
        ps = selector.xpath('//p')
        detail = []
        for p in ps:
            info = p.xpath('string(.)').replace('\r','').replace('\n','').replace('\xa0', '').replace('   ', '').replace('\t','')
            detail.append(info)
        symptoms_data = {}
        symptoms_data['symptoms'] = symptoms
        symptoms_data['symptoms_detail'] = detail
        return symptoms, detail
 
    '''检查信息解析'''
    def inspect_spider(self, url):
        html = self.get_html(url)
        selector = etree.HTML(html)
        inspects  = selector.xpath('//li[@class="check-item"]/a/@href')
        return inspects
 
    '''通用解析模块'''
    def common_spider(self, url):
        html = self.get_html(url)
        selector = etree.HTML(html)
        ps = selector.xpath('//p')
        infobox = []
        for p in ps:
            info = p.xpath('string(.)').replace('\r', '').replace('\n', '').replace('\xa0', '').replace('   ','').replace('\t', '')
            if info:
                infobox.append(info)
        return '\n'.join(infobox)
    '''检查项抓取模块'''
    def inspect_crawl(self):
        for page in range(1, 3685):
            try:
                url = 'http://jck.xywy.com/jc_%s.html'%page
                html = self.get_html(url)
                data = {}
                data['url']= url
                data['html'] = html
                self.db['jc'].insert(data)
                print(url)
            except Exception as e:
                print(e)
 
 
handler = CrimeSpider()
handler.inspect_crawl()

在这请忽略类的名称叫CrimeSpider,这是因为刘老师之前还做了一个完整的和司法案件有关的知识图谱,加上爬虫之间大同小异,改一改就能爬取另外一个网站。对于该爬虫文件我不做过多解读,详细情况可以参照本人另一篇博客。

https://blog.csdn.net/chen_nnn/article/details/122979611

这里我们主要关注一下,刘老师爬取的网站的情况,从代码中可以看出数据的原网站是寻医问药网的疾病百科。

 可以看到该网站的疾病百科从HTML的角度来看,结构较为清晰,比较适合爬取,之后的数据处理的工作量可以大大减少。爬虫将所有与该疾病相关的信息都进行爬取和存储,最终一共爬取了8807条和疾病有关的数据,里面的数据存储的结构如下。

build_data.py

该文件是将爬虫爬取到的数据进行规整,实现上图所示的结构。

MedicalGraph类:

import pymongo
from lxml import etree
import os
from max_cut import *
 
class MedicalGraph:
    def __init__(self):
        self.conn = pymongo.MongoClient()#'''建立无用户名密码连接'''
        cur_dir = '/'.join(os.path.abspath(__file__).split('/')[:-1])
        self.db = self.conn['medical']
        self.col = self.db['data']
        first_words = [i.strip() for i in open(os.path.join(cur_dir, 'first_name.txt'))]
        alphabets = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y', 'z']
        nums = ['1','2','3','4','5','6','7','8','9','0']
        self.stop_words = first_words + alphabets + nums
        self.key_dict = {
            '医保疾病' : 'yibao_status',
            "患病比例" : "get_prob",
            "易感人群" : "easy_get",
            "传染方式" : "get_way",
            "就诊科室" : "cure_department",
            "治疗方式" : "cure_way",
            "治疗周期" : "cure_lasttime",
            "治愈率" : "cured_prob",
            '药品明细': 'drug_detail',
            '药品推荐': 'recommand_drug',
            '推荐': 'recommand_eat',
            '忌食': 'not_eat',
            '宜食': 'do_eat',
            '症状': 'symptom',
            '检查': 'check',
            '成因': 'cause',
            '预防措施': 'prevent',
            '所属类别': 'category',
            '简介': 'desc',
            '名称': 'name',
            '常用药品' : 'common_drug',
            '治疗费用': 'cost_money',
            '并发症': 'acompany'
        }
        self.cuter = CutWords()

pymongo是一个方便使用数据库的库函数,首先按照刘老师注释所言,建立一个无用户名密码连接,然后定义一个指针变量,该变量使用os.path.abspath(只有当在脚本中执行的时候,os.path.abspath(__file__)才会起作用,因为该命令是获取的当前执行脚本的完整路径,如果在交互模式或者terminate 终端中运行会报没有__file__这个错误。)获取绝对路径。然后再获取该路径下的first_name.txt中的内容,构建一个first_words变量(os.path.join的作用是:连接两个或更多的路径名组件1.如果各组件名首字母不包含’/’,则函数会自动加上2.如果有一个组件是一个绝对路径,则在它之前的所有组件均会被舍弃3.如果最后一个组件为空,则生成的路径以一个’/’分隔符结尾)。

但是这个first_name.txt里面的内容却并没有在文件中给出,所以我们也不知道是以一个怎样的逻辑,但是我们有了最后构建好的json文件,所以这部分我们就当做背景知识的学习。

collect_medical():

    def collect_medical(self):
        cates = []
        inspects = []
        count = 0
        for item in self.col.find():
            data = {}
            basic_info = item['basic_info']
            name = basic_info['name']
            if not name:
                continue
            # 基本信息
            data['名称'] = name
            data['简介'] = '\n'.join(basic_info['desc']).replace('\r\n\t', '').replace('\r\n\n\n','').replace(' ','').replace('\r\n','\n')
            category = basic_info['category']
            data['所属类别'] = category
            cates += category
            attributes = basic_info['attributes']
            # 成因及预防
            data['预防措施'] = item['prevent_info']
            data['成因'] = item['cause_info']
            # 并发症
            data['症状'] = list(set([i for i in item["symptom_info"][0] if i[0] not in self.stop_words]))
            for attr in attributes:
                attr_pair = attr.split(':')
                if len(attr_pair) == 2:
                    key = attr_pair[0]
                    value = attr_pair[1]
                    data[key] = value
            # 检查
            inspects = item['inspect_info']
            jcs = []
            for inspect in inspects:
                jc_name = self.get_inspect(inspect)
                if jc_name:
                    jcs.append(jc_name)
            data['检查'] = jcs
            # 食物
            food_info = item['food_info']
            if food_info:
                data['宜食'] = food_info['good']
                data['忌食'] = food_info['bad']
                data['推荐'] = food_info['recommand']
            # 药品
            drug_info = item['drug_info']
            data['药品推荐'] = list(set([i.split('(')[-1].replace(')','') for i in drug_info]))
            data['药品明细'] = drug_info
            data_modify = {}
            for attr, value in data.items():
                attr_en = self.key_dict.get(attr)
                if attr_en:
                    data_modify[attr_en] = value
                if attr_en in ['yibao_status', 'get_prob', 'easy_get', 'get_way', "cure_lasttime", "cured_prob"]:
                    data_modify[attr_en] = value.replace(' ','').replace('\t','')
                elif attr_en in ['cure_department', 'cure_way', 'common_drug']:
                    data_modify[attr_en] = [i for i in value.split(' ') if i]
                elif attr_en in ['acompany']:
                    acompany = [i for i in self.cuter.max_biward_cut(data_modify[attr_en]) if len(i) > 1]
                    data_modify[attr_en] = acompany
 
            try:
                self.db['medical'].insert(data_modify)
                count += 1
                print(count)
            except Exception as e:
                print(e)
 
        return

 find() 方法检测字符串中是否包含子字符串 str ,如果指定 beg(开始) 和 end(结束) 范围,则检查是否包含在指定范围内,如果指定范围内如果包含指定索引值,返回的是索引值在字符串中的起始位置。如果不包含索引值,返回-1。item和basic_info都以字典的形式储存数据。

由于在该for循环中,定义了data字典,之后将有关该疾病的各种信息以键值对的形式存储到字典当中。首先是名称、简介信息(需要对其做一些修正然后才能保存)、疾病类别、预防措施、成因、症状。然后对于其他信息格式如XXX:XXX也同样进行存储,在冒号之后还有并列的情况之后处理。对于inspects中包含多个项目,在data['检查']下以列表的形式存储。最后是食物和药品。将这一切都存储到data中去后,在最后我们对data的格式进行最后一次修正,使用之前设定好的英文名。然后将其保存到数据库当中。

get_inspect():

    def get_inspect(self, url):
        res = self.db['jc'].find_one({'url':url})
        if not res:
            return ''
        else:
            return res['name']

待续

知识图谱基础代码构建(医疗向)_chen_nnn的博客-CSDN博客_构建知识图谱代码

相关文章:

  • 网站开发是先做前段还是后台/站长之家seo综合
  • 莎娜琳官方网站做水/百度站长统计
  • wordpress修改登录界面/提高seo关键词排名
  • 设计高端网站建设/百度推广账号登陆入口
  • 免费空间如何放网站/推广团队在哪里找
  • 做零食的网站/上海网络seo公司
  • 【Numpy基础知识】Broadcasting广播
  • 华为云CDN助力企业用户体验全面优化,让企业“惠”加速
  • Java项目:springboot+vue电影院会员管理系统
  • Android实现一维二维码扫描生成功能(一)-zxing导入现有项目
  • 企业经常会问到的软件测试面试题及答案,一定要好好记住
  • 转互联网好难,如何避免无效转行?
  • 试卷的安全方案
  • 真香啊,这招可以轻松抓取某音短视频数据(附 Python 代码)
  • ETHERCAT从站设计与FOC伺服马达电流环控制
  • nginx 解决跨域问题——(CORS)
  • Freemodbus启动流程分析
  • Java项目:springboot网上点餐系统