当前位置: 首页 > news >正文

基于二叉树的改进SPIHT算法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

文献来源:

随着现代社会越来越大量的信息需要存储和传输,通常会对这些信息进行压缩。人们不仅希望压缩算法有较高的压缩比,而且希望算法执行速度快。小波变换具有良好的时频局部表达能力和多分辨率分析特性,并有快速分解重构算法,在图像编码领域得到了广泛的应用。嵌入式零树编码算

法[1](Embedded Zerotree Wavelet, EZW)是一种基于小波变换的图像压缩算法,它通过不同尺度的小波系数在每个比特平面的空间相似性构造零树,从而用一个零树根成功地预测了大量非重要系数,取得了比基于离散余弦变换的 JPEG 更好的 压 缩 效 果 。 多 级 树 集 合 分 裂 (Set Partitioning in Hierarchical Trees, SPIHT)算法[2]对 EZW 算法做了重要改进,其具有更高的压缩效率、更快的执行速度等优点,是目前基于零树结构的压缩算法中的较优的算法[3]。SPECK(Set

Partitioning Embedded block)算法[4]加快了计算速度并进一步利用了子带内相连系数块的关系。

为取得更好的压缩效果,以上文献中几乎所有算法都需要进行无损压缩(熵编码)以便提高算法效率。然而,进行熵编码需要很大的计算量。如果在 SPIHT 算法中使用算术编码,编码时间将会多一倍以上[2]。为在保持 SPIHT 算法速度的同时改进压缩效果,本文提出一种新的基于 SPIHT 和二叉树的快速编码算法。该算法与上述文献不同,虽然文献[9]提出了一种基于提升小波的二叉树图像编码方法,不过此方法中的二叉树是一种和 SPIHT 的方向树类似的跨尺度的零树结构,而本文算法中的二叉树则建立在同一尺度的相邻系数上。

📚2 运行结果

 

 部分代码:

clc;clear;

%-----------   Input   ----------------

global level carow row

imname = 'img_lena.bmp';   
Orig_I=double(imread(imname));

[row, col] = size(Orig_I);

% 最大比特率
rate = 1; 
max_bits = floor(rate * row^2);

% 5个比特率下的编码长度[128:1, 64:1, 32:1, 16:1, 8:1]
brates = floor([0.0625, 0.125, 0.25, 0.5, 1]*row*row);

%-----------   Wavelet Decomposition   ----------------
n = size(Orig_I,1);
n_log = log2(n); 

level = floor(n_log);
% level = 3;

carow = 2^(n_log-level);

I_W = wavecdf97(Orig_I, level);

n_max = floor(log2(abs(max(max(I_W)'))));  % 初始阈值T=2^n_max

% =========================================================================
% Coding
[out_head,out_code,out_type,pixFlag] = func_SPIHT_Enc(I_W, max_bits, level); 
l2 = find(out_code==2);   out_code(l2)=[];
l2 = find(out_type=='O');  out_type(l2)=[];

% =========================================================================
% Decoding
disp(['aa_TSPIHT_' imname ' = [']);
img_dec = func_SPIHT_Dec(out_head,out_code,brates,Orig_I);
disp('];');

img_spiht = wavecdf97(img_dec, -level);
Q = 255;
MSE = sum(sum((img_spiht - Orig_I) .^ 2)) / row / col;
psnr = 10*log10(Q*Q/MSE);
rate = numel(Orig_I)*8/length(out_code);
disp([psnr,rate]);

clc;clear;

%-----------   Input   ----------------

global level carow row

imname = 'img_lena.bmp';   
Orig_I=double(imread(imname));

[row, col] = size(Orig_I);

% 最大比特率
rate = 1; 
max_bits = floor(rate * row^2);

% 5个比特率下的编码长度[128:1, 64:1, 32:1, 16:1, 8:1]
brates = floor([0.0625, 0.125, 0.25, 0.5, 1]*row*row);

%-----------   Wavelet Decomposition   ----------------
n = size(Orig_I,1);
n_log = log2(n); 

level = floor(n_log);
% level = 3;

carow = 2^(n_log-level);

I_W = wavecdf97(Orig_I, level);

n_max = floor(log2(abs(max(max(I_W)'))));  % 初始阈值T=2^n_max

% =========================================================================
% Coding
[out_head,out_code,out_type,pixFlag] = func_SPIHT_Enc(I_W, max_bits, level); 
l2 = find(out_code==2);   out_code(l2)=[];
l2 = find(out_type=='O');  out_type(l2)=[];

% =========================================================================
% Decoding
disp(['aa_TSPIHT_' imname ' = [']);
img_dec = func_SPIHT_Dec(out_head,out_code,brates,Orig_I);
disp('];');

img_spiht = wavecdf97(img_dec, -level);
Q = 255;
MSE = sum(sum((img_spiht - Orig_I) .^ 2)) / row / col;
psnr = 10*log10(Q*Q/MSE);
rate = numel(Orig_I)*8/length(out_code);
disp([psnr,rate]);

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]黄可坤.基于二叉树的改进SPIHT算法[J].计算机工程,2012,38(15):218-221. 

相关文章:

  • 网站建设有利点/女儿考试没圈关键词
  • 武汉做网站找谁/中央网站seo
  • 游戏网站建设网/石家庄百度关键词搜索
  • 做网站的账务处理/宣传推广的十种方式
  • 外贸建设网站/杭州网站外包
  • 确保网站建设又在前列/网络推广招聘
  • 大数据分案例-基于随机森林算法构建返乡人群预测模型
  • 适合编程初学者的开源项目:小游戏2048(安卓Compose版)
  • 数据标注平台(CVAT)安装及踩坑记录
  • 【jQuery】jQuery其他方法
  • SPSS常用的10种统计分析
  • 【TypeScript】TS泛型
  • 【鸟哥杂谈】腾讯云 CentOS8 Linux环境搭建docker
  • Kotlin~策略模式+简单工厂模式消除if else
  • 二十八、Kubernetes中job详解
  • EDA开源仿真工具verilator入门8:verilator 5.0 最新版本仿真玄铁性能对比
  • Duet 安装教程
  • 【三年面试五年模拟】算法工程师的独孤九剑秘籍(第十二式)