当前位置: 首页 > news >正文

【图像分割】基于电磁算法优化多级阈值实现图像分割附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

针对传统Kapur熵和oust在多阈值图像分割算法中存在运算量大、计算效率低以及精度不高等问题,提出了一种基于电磁算法的多级阈值图像分割方法,该方法采用Kapur熵作为计算适应度的目标函数,通过引入电磁算法求解目标函数最大化时的全局最优问题.实验结果表明:相对于其他方法,本文方法在多个评价指标上都有很好的性能体现,并且本文方法在保证较好分割效果的同时,计算效率明显提升.

⛄ 部分代码

%Diego Oliva, Erik Cuevas, Gonzalo Pajares, Daniel Zaldivar, Valent韓 Osuna. 

%A Multilevel Thresholding algorithm using electromagnetism optimization

%Universidad Complutense de Madrid / Universidad de Guadalajara

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The algorithm was published as:

%Diego Oliva, Erik Cuevas, Gonzalo Pajares, Daniel Zaldivar, Valent韓 Osuna. 

%A Multilevel Thresholding algorithm using electromagnetism optimization, 

%Journal of Neurocomputing, 139, (2014), 357-381.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [fitR, fitBestR, fitG, fitBestG, fitB, fitBestB] = fitnessIMG(I, N, Lmax, level, xR, probR, xG, probG, xB, probB)

%Metodo de Otsu

%Evalua poblaciones xR, xG, xB, en la funcion objetivo para obtener

%fitR, fitG, fitB, dependiendo si la imagen es RGB o escala de grises

for j = 1:N

    if size(I,3) == 1 

        %grayscale image

        fitR(j) = sum(probR(1:xR(j,1))) * (sum((1:xR(j,1)) .* probR(1:xR(j,1)) / sum(probR(1:xR(j,1)))) - sum((1:Lmax) .* probR(1:Lmax)) ) ^ 2;

        for jlevel = 2:level - 1

            fitR(j) = fitR(j) + sum(probR(xR(j,jlevel - 1) + 1:xR(j,jlevel))) * (sum((xR(j,jlevel - 1) + 1:xR(j,jlevel)) .* probR(xR(j,jlevel - 1) + 1:xR(j,jlevel)) / sum(probR(xR(j,jlevel - 1) + 1:xR(j,jlevel)))) - sum((1:Lmax) .* probR(1:Lmax))) ^ 2;

        end

        fitR(j) = fitR(j) + sum(probR(xR(j,level-1) + 1:Lmax)) * (sum((xR(j,level - 1) + 1:Lmax) .* probR(xR(j,level - 1) + 1:Lmax) / sum(probR(xR(j,level - 1) + 1:Lmax))) - sum((1:Lmax) .* probR(1:Lmax))) ^ 2;

%         if isnan(fitR(j))

%             fitR(j)=eps;

%         end

        fitBestR(j) = fitR(j);

       

    elseif size(I,3) == 3 

        %RGB image

        fitR(j) = sum(probR(1:xR(j,1))) * (sum((1:xR(j,1)) .* probR(1:xR(j,1)) / sum(probR(1:xR(j,1)))) - sum((1:Lmax) .* probR(1:Lmax))) ^ 2;

        for jlevel = 2:level - 1

            fitR(j) = fitR(j) + sum(probR(xR(j,jlevel - 1) + 1:xR(j,jlevel))) * (sum((xR(j,jlevel - 1) + 1:xR(j,jlevel)) .* probR(xR(j,jlevel - 1) + 1:xR(j,jlevel)) / sum(probR(xR(j,jlevel - 1) + 1:xR(j,jlevel)))) - sum((1:Lmax) .* probR(1:Lmax))) ^ 2;

        end

        fitR(j) = fitR(j) + sum(probR(xR(j,level-1) + 1:Lmax)) * (sum((xR(j,level - 1) + 1:Lmax) .* probR(xR(j,level - 1) + 1:Lmax) / sum(probR(xR(j,level - 1) + 1:Lmax))) - sum((1:Lmax) .* probR(1:Lmax))) ^ 2;

        fitBestR(j) = fitR(j);

        

        fitG(j) = sum(probG(1:xG(j,1))) * (sum((1:xG(j,1)) .* probG(1:xG(j,1)) / sum(probG(1:xG(j,1)))) - sum((1:Lmax) .* probG(1:Lmax))) ^ 2;

        for jlevel = 2:level - 1

            fitG(j) = fitG(j) + sum(probG(xG(j,jlevel - 1) + 1:xG(j,jlevel))) * (sum((xG(j,jlevel - 1) + 1:xG(j,jlevel)) .* probG(xG(j,jlevel - 1) + 1:xG(j,jlevel)) / sum(probG(xG(j,jlevel - 1) + 1:xG(j,jlevel)))) - sum((1:Lmax) .* probG(1:Lmax))) ^ 2;

        end

        fitG(j) = fitG(j) + sum(probG(xG(j,level - 1) + 1:Lmax)) * (sum((xG(j,level-1) + 1:Lmax) .* probG(xG(j,level - 1) + 1:Lmax) / sum(probG(xG(j,level - 1) + 1:Lmax))) - sum((1:Lmax) .* probG(1:Lmax))) ^ 2;

        fitBestG(j) = fitG(j);

        

        fitB(j) = sum(probB(1:xB(j,1))) * (sum((1:xB(j,1)) .* probB(1:xB(j,1)) / sum(probB(1:xB(j,1)))) - sum((1:Lmax) .* probB(1:Lmax))) ^ 2;

        for jlevel = 2:level - 1

            fitB(j) = fitB(j) + sum(probB(xB(j,jlevel - 1) + 1:xB(j,jlevel))) * (sum((xB(j,jlevel - 1) + 1:xB(j,jlevel)) .* probB(xB(j,jlevel - 1) + 1:xB(j,jlevel)) / sum(probB(xB(j,jlevel - 1) + 1:xB(j,jlevel)))) - sum((1:Lmax) .* probB(1:Lmax))) ^ 2;

        end

        fitB(j) = fitB(j) + sum(probB(xB(j,level - 1) + 1:Lmax)) * (sum((xB(j,level - 1) + 1:Lmax) .* probB(xB(j,level - 1) + 1:Lmax) / sum(probB(xB(j,level - 1) + 1:Lmax))) - sum((1:Lmax) .* probB(1:Lmax))) ^ 2;

        fitBestB(j) = fitB(j);

    end

end

  if size(I,3) == 1 

      %Imagen escala de Grises

        fitR = fitR';

        fitBestR = fitBestR';

  elseif size(I,3) == 3

      % Imagen RGB

        fitR = fitR';

        fitBestR = fitBestR';

        fitG = fitG';

        fitBestG = fitBestG';

        fitB = fitB';

        fitBestB = fitBestB';

  end

⛄ 运行结果

⛄ 参考文献

[1]康丽锋, 吴锋. 基于乌鸦搜索优化算法的多级阈值图像分割方法[J]. 西南师范大学学报:自然科学版, 2021, 46(1):6.

[2]孙研. 基于智能优化算法的多阈值图像分割技术及其并行加速[D]. 南京理工大学, 2014.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

相关文章:

  • 南京网站建设优化/微信指数是搜索量吗
  • 做婚恋网站怎么样/网络推广合作协议范本
  • 福建省建设厅网站官网/一键搭建网站
  • 宣传片制作网站/广州seo网络推广员
  • 赤蚁网站建设/上海网站seoseodian
  • 软件外包保密协议/考拉seo
  • SushiSwap历任“主厨”史
  • 【数据结构与算法】用队列实现栈用栈实现队列设计循环队列
  • 【模型训练】YOLOv7吸烟行为检测
  • stm32f4xx-ADC
  • 吃透Jmeter,5小时搞定5天工作量
  • Unreal4.27 houdini niagara粒子无法导入问题笔记
  • 使用Docker搭建Apache Kafka环境
  • 【Linux】权限管理
  • 【学生管理系统】用户管理之用户登录
  • 操作系统八股文03-内存管理
  • DRL经典文献阅读(一):策略梯度理论(Policy Gradient, PG)
  • 第26章 物联网软件系统测试